
Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS Macro Tut Cover (NZC212)

Tiger Series TDS MACRO TUTORIAL

ChapterChapterss

This tutorial describes how to write and compile source code into a macro
using the Tiger Development System (TDS) program.

The tutorial is organized in the following chapters and appendix:

Getting Started
Chapter 1 introduces you to the TDS program. It lists the minimum system
requirements to successfully run the compiler, describes how to install the
software from disk or download, and takes you through the basic steps to
launch the compiler after it has been loaded. It also provides definitions of
all tools and buttons to get you started.1

Basic Lessons
Chapter 2 consists of 12 lessons that describe the basic building blocks to
write and compile simple macros. The lessons begin with simple macros and
introduce new source code development methods in each lesson.2

Appendix A
Appendix A is a glossary of terms used throughout the tutorial and also
lists items such as keywords and pre-defined macro labels.

AppendicesAppendices

A

Intermediate Lessons
Chapter 3 consists of 17 lessons designed to take you from the basic
building blocks into sophisticated macros.

3
Advanced Lessons

Chapter 4 consists of 16 lessons designed to enhance your sophisticated
macros with added functionality and sophistication.

4

PROGRAMMING TIP Symbol

The programming t ip symbol is generic to all Tiger Series documents

and indicates helpful tips when programming the instrument, or in this

case, compiling macros.

This document contains four graphic symbols to aid you:

General Notices & Tips

NOTE Symbol

The n o t e symbol is generic to all Tiger Series user manual supplements

and indicates important or helpful information, or a reference to further

information on the topic being discussed. Where the note is a reference to

further information, it stands alone in bold text on a shaded background.

Where it is important or helpful information it follows the general flow of

the text and is indicated by the symbol only.

Definitions

Meter

The term meter, as used throughout this document, is a generic term for all Tiger

Series programmable meter controllers.

Conventions Used in
this Manual

QUESTION Symbol

The question symbol forms part of the tutorial structure and poses a ques-

tion the reader may ask themselves about the topic followed by an answer.

?

TDS

The term TDS has been used throughout this document and is simply the acronym

for the Tiger Development System.

CAUTION Using the WARNING Symbol

The w a r n i n g symbol is used in this tutorial to draw the reader’s atten-

tion to the fact that failure to carry out or avoid a specific action in the

process of writing a macro can result in loss of data.

1GGeettttiinngg SSttaarrtteedd

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH1 Get Started (NZC212)

IInnttrroodduuccttiioonn ..22

SSyysstteemm RReeqquuiirreemmeennttss ..22

IInnssttaalllliinngg tthhee TTDDSS SSooffttwwaarree ..33

GGeettttiinngg SSttaarrtteedd ..44

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

1-2

 TDS CH1 Get Started (NZC212)

GGeettttiinngg SSttaarrtteedd

 TDS CH1 Get Started (NZC212)

SSyysstteemm RReeqquuiirreemmeennttss

This tutorial provides 45 lessons describing the steps required to write
and compile the source code for a macro using the TDS program. The
TDS uses the BASIC programming language and can be downloaded free
from our website at www.texmate.com. The lessons begin with simple
macro instructions and progress to more complicated macro instructions.

Purpose of this
Manual

To understand the functionality and versatility of our Tiger Series
meters, we suggest that the following documents are read in conjunc-
tion with this tutorial:

• Relevant Tiger Series meter user manual.

• Programming Code Sheet (NZ101).

• Serial Communications Module Supplement (NZ202).

• Meter Configuration Utility Program Supplement (NZ206).

• Registers Supplement (CA101 or CA102).

Texmate have a range of application specific supplements available
covering meter functions such as linearization, totalizing, and setpoint
and relay control. Please contact Texmate for an up-to-date list of all
available supplements.

Supplementary
Information

The minimum system requirements to successfully install and run the
TDS program are:

• A personal computer with a 486DX 66 MHz processor (Pentium CPU
recommended).

• 16 MB of RAM (24 MB recommended).

• VGA or higher resolution monitor (16-bit or 24-bit SVGA recom-
mended).

• One 3.5-inch high-density floppy disk drive.

• A CD-ROM drive (only if software supplied on CD-ROM).

• HTML browser (only if software downloaded from Texmate website).

• Windows 95 or later operating system.

IInnttrroodduuccttiioonn

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH1 Get Started (NZC212)

1-3GGeettttiinngg SSttaarrtteedd

IInnssttaalllliinngg tthhee TTDDSS SSooffttwwaarree

The TDS program runs on an IBM or compatible personal computer. The
software can be purchased on a CD or is available for downloading at
www.texmate.com.

5) Click the OK button to begin installing the software.

6) Follow the onscreen prompts to load the software.

Installation from a
Downloaded File

TToo iinnssttaall ll yyoouurr TTDDSS pprrooggrraamm ffrroomm aa ddoowwnnllooaaddeedd ffii llee:
1) Download the TDS program from the Texmate website.

2) Double-click on the Setup.exe file.

3) Follow the onscreen prompts to load the software.

4) At the Open prompt, type D:\\Setup.exe (or the letter assigned to your
CD drive).

Or, click the Browse button and find the Setup.exe file for the TDS
program.

Installation from a CD TToo iinnssttaall ll yyoouurr TTDDSS pprrooggrraamm ffrroomm aa CCDD:
1) Place the CD into your CD ROM drive.

2) Click the Start button to display the Start menu.

3) Click Run on the Start menu.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

1-4

 TDS CH1 Get Started (NZC212)

GGeettttiinngg SSttaarrtteedd

GGeettttiinngg SSttaarrtteedd

When you launch the TDS program, you’ll see a working screen similar
to the one shown below (See Working Screen Legend on the opposite
page):

The TDS Program
Working Screen

TToo llaauunncchh tthhee BBAASSIICC CCoommppiilleerr pprrooggrraamm:
1) On your Desktop, double-click the TDS Program icon,

OR

Click the Start button and select the TDS program
from the Start menu.

A Texmate splash-screen appears and, after a few sec-
onds, the TDS program opens.

Launching the TDS
Program

When you move the cursor over a
pre-defined variable name it
changes to a select hand and a
pop-up window appears describing
the name of the register.

A

C

B

N

L

D E

O

P

F G

Q

Indicates that the current
connection parameters
(baudrate 9600, parity None).

H J K

M

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH1 Get Started (NZC212)

1-5GGeettttiinngg SSttaarrtteedd

The working screen contains the following tools to write, compile, and
edit a macro for any application.

The TDS Toolbox

Main Menu bar

A – Main Menu bar.

B – Standard New, Open, Save option buttons.

C – Undo typing button.

D – Source Code editor.

E – Erase macro button

F – Compile macro button.

G – Open Port button.

H – Download macro button.

I – Macro On/Off button.

J – Start/Stop Macro button.

K – Online Help.

L – Switcher between Functional
and Alphabetical List View

M – Meter type indication.

N – Predefined Variables Tree View window.

O – Tree View Legend

P – Message window

Q – Status bar.

This is the horizontal strip displayed at the top of the working screen
and contains the following menu commands:

• FFii llee. This is a standard Windows-based File menu that contains
commands such as New, Open, Save, Save As, and Print.

• EEddiitt. This Windows-based Edit
menu has standard commands
such as Undo, Cut, Copy, and
Paste as well as a Syntax
Highlighting command.

Syntax highlighting automatically formats the various parts of a
macro, such as comments and reserved words. Click on the Syntax
Highlighting command to open the Syntax Highlighting dialog box.
This dialog box allows you to edit the font, format, and color of the
text displayed in the source code editor.

Working Screen Legend

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

1-6

 TDS CH1 Get Started (NZC212)

GGeettttiinngg SSttaarrtteedd

New button

Click the NNeeww button to reset the Source Code editor to a blank
screen for typing new code.

• SSeeaarrcchh. This menu provides access to the Find, Replace, and
Search Again commands.

• CCoommppii llee. This button compiles the code currently displayed in the
source code editor.

• HHeellpp. This menu lists the revision status of
the TDS program in an About dialog box.

• CCoonnnneeccttiioonn. This menu provides access to
the Connect, Download, and Macro On/Off
commands.

Changes the back-
ground color of the
source code editor

Changes the type
and size of the
font used in the
source code editor

Changes the font
color and format
of the various text
types

PROGRAMMING TIP

The default settings
shown here are used
throughout the les-
sons in this tutorial.

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH1 Get Started (NZC212)

1-7GGeettttiinngg SSttaarrtteedd

Open button

Click the OOppeenn button to dis-
play the OOppeenn dialog box.
Select and open the required
macro (macros have a .bas file
extension).

Save button

Click the SSaavvee button to save the displayed source code of a new macro,
or the edited source code of an existing macro.

Undo button

Click the UUnnddoo button to undo typing in single steps back to the last save.

File types

To edit or compile an existing macro, select SSoouurrccee as the file type from
the FFiilleess ooff ttyyppee list. This shows source code files with a .bas extension.

The compile process generates another file type: the MMaaccrroo CCooddee
with a .cmp extension. This file can be opened and downloaded to the
meter with the TDS or the Configuration Utility if the source code is
not available. This can be useful for OEM users who want to release an
update to their customers, but do not want to make the source code
public.

Erase Macro button

The erase Macro button is used
to erase a macro from the
meter. When connected to the
meter, pressing the EErraassee
MMaaccrroo button activates an
Erase Macro Warning dialog. To
continue, press the EErraassee
MMaaccrroo button in the dialog. To
abort the procedure, press the
CCaanncceell button.

Compile button

Click the CCoommppii llee button to compile the displayed source code into a
macro ready to send to the
meter. By default the TDS
compiles for Tiger 320
meters. You can change the
meter type in the Compiler
menu.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

1-8

 TDS CH1 Get Started (NZC212)

GGeettttiinngg SSttaarrtteedd

Download button

Click the DDoowwnnllooaadd button to download compiled macros and data to the
meter.

If you attempt to download a new macro
to the meter and there are existing
macros in the meter, the following
WWaarrnniinngg dialog box appears:

When connected, the button becomes the
CClloossee PPoorrtt button. Click the CClloossee PPoorrtt
button to close the serial port connection.

Being connected to the meter allows you to
enable or disable any current macros in the
meter using the MMaaccrroo OOnn//OOffff button, and
also erase macros with the EErraassee button.

Open Port button

Click the OOppeenn PPoorrtt button to connect to the meter via the serial
port. A SSeelleecctt PPoorrtt dialog box opens to allow you to select another
COM port if COM Port 1 is busy or not valid.

The currently selected meter type is indicated at the top of the regis-
ter list window.

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH1 Get Started (NZC212)

1-9GGeettttiinngg SSttaarrtteedd

If you click YYeess to overwrite, the existing macro or macros are erased
from the meter’s memory. When downloading a macro to the meter,
the Download Progress bar indicates the progress of the downloading
process.

Download
Progress bar

Macro On/Off button

When connecting to the serial port for the first time after power up, the
MMaaccrroo OOnn//OOffff button is inactive. Click the OOppeenn ppoorrtt button to con-
nect to the meter through the serial port. The MMaaccrroo OOnn//OOffff button
then becomes either SSttaarrtt MMaaccrroo or SSttoopp MMaaccrroo reflecting the current
state of the meter.

If the button changes to SSttaarrtt MMaaccrroo, a green arrow
appears on the button. This indicates that the macro in
the meter is currently turned OFF and can be turned ON
by clicking the SSttaarrtt MMaaccrroo button.

If the button changes to SSttoopp MMaaccrroo, a red square
appears on the button. This indicates that the macro in
the meter is currently turned ON, and can be turned OFF
by clicking the SSttoopp MMaaccrroo button.

When the serial port is closed by clicking the CClloossee
PPoorrtt button, the MMaaccrroo button (whether Stop or Start)
becomes the active MMaaccrroo OOnn//OOffff button again.
Clicking this or the OOppeenn PPoorrtt button opens the serial
port again.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

1-10

 TDS CH1 Get Started (NZC212)

GGeettttiinngg SSttaarrtteedd

Pre-defined Variables window

The PPrree--ddeeffiinneedd VVaarriiaabblleess window shows a list of all the pre-defined
registers available in the meter in a tree view format.

Tree View legend

Below the Pre-defined Variables window is a legend describing all the
symbols used in the tree view.

Source Code editor

The SSoouurrccee CCooddee eeddiittoorr is where you type basic source code to be
compiled into a macro. Use the right mouse button (right-click) to dis-
play a list of source code templates in the SSoouurrccee CCooddee eeddiittoorr.
These allow you to quickly insert the basic structure of various com-
mands into your source code

Macro Source Code
Templates and Pre-
defined Commands

Drop-down List

Pre-defined
Variables
Window

Tree View
Legend

Pre-defined
Variables

Tree

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH1 Get Started (NZC212)

1-11GGeettttiinngg SSttaarrtteedd

Getting Around in
the TDS Program

Adding macros

We will assume that you want to add the mmaaiinn mmaaccrroo. Once you have
launched the TDS program, proceed as follows:

1) Right-click in the line you
want the main macro to
appear in the Source Code
Editor.

A selection of macro tem-
plates appear.

2) Left-click on Main Macro.

The editor inserts the Main
Macro definition as well as
an end (of macro) com-
mand.

Macro Template
and Pre-defined

Commands
Drop-down List

Editing macros

We will now assume that you want to add an IF ELSE ENDIF com-
mand to the mmaaiinn mmaaccrroo.

Main Macro definition

End (of macro) command

1) Position the cursor in the sec-
ond line and right-click.

A selection of command tem-
plates appear.

2) Left-click the IF ELSE ENDIF
command.

The editor inserts the frame-
work of an IF ELSE ENDIF
command.

PROGRAMMING TIP

Using the source code templates and pre-defined
commands in the drop-down list, ensures that the
template or pre-defined command definition is
entered correctly and will not generate an error.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

1-12

 TDS CH1 Get Started (NZC212)

GGeettttiinngg SSttaarrtteedd

Add SP1 as a pre-defined variable to the framework of the IF ELSE
ENDIF command.

1) With the cursor between IF and THEN in
the source code editor, scroll down the list
of pre-defined variables and select SP1.

SP1 appears in the pre-defined variables
tree view.

2) Double-click SP1 in the pre-defined vari-
ables tree view.

|SP1 is inserted into line 2 between IF

and THEN.

Select SP1 then
double-click

IF THEN part of the command

ELSE part of the command

ENDIF part of the command

|SP1 is inserted here

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH1 Get Started (NZC212)

1-13GGeettttiinngg SSttaarrtteedd

Correcting Code errors

We will assume that you made an error in your
source code. When you click the CCoommppii llee button,
a critical error message displays on the screen.

A brief explanation of the error
is shown in the Status Bar

Double -click to go to the error
line

This informs you that there is a compiler error in the macro and a brief
explanation of the error is shown in the MMeessssaaggee window. After press-
ing the OOKK button, the line where an error is detected is highlighted.
Correct the error and try compiling again. If there was more than one
error, another critical error message is displayed and the next error in
line is highlighted. Keep correcting until all errors have been corrected.
All errors must be corrected before the macro will compile.

Error Highlight

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

1-14

 TDS CH1 Get Started (NZC212)

GGeettttiinngg SSttaarrtteedd

Saving Macros

As you are going to be creat-
ing a number of macros while
going through the lessons in
Chapter 2, it’s a good idea to
decide on file name conven-
tions and where to save them
beforehand. All saved macros
have a .bas file extension.

Key Words

Text

Macro Label

Symbolic Constants
Comments

Numbers

Text Strings

Syntax Variations

The text used to compile the macro code in the source code editor is
automatically formatted by the program when it recognizes certain
names or symbols. For example, the default settings for all text is 10
point black Courier New. Anything typed into the source code editor
window begins as this. As soon as the program recognizes a key word,
macro label, or any of the other syntax variations, it changes the for-
mat and color to suit the syntax settings. Pre-defined macro names are
case insensitive. Key words can be either upper or lower case, but not
both. Register names and any user defined variables, bits, registers,
and labels are case sensitive. All ASCII constants are upper case.

2BBaassiicc LLeessssoonnss 2
LLeessssoonn 11 –– TThhee MMaaiinn MMaaccrroo ..22

LLeessssoonn 22 –– TThhee IIFF TTHHEENN CCoommmmaanndd ..66

LLeessssoonn 33 –– TThhee IIFF TTHHEENN EELLSSEE CCoommmmaanndd ..88

LLeessssoonn 44 –– TThhee IIFF TTHHEENN EELLSSIIFF CCoommmmaanndd ..99

LLeessssoonn 55 –– RReeggiisstteerrss aanndd BBiitt FFllaaggss ..1111

LLeessssoonn 66 –– NNeesstteedd IIFF TTHHEENN CCoommmmaannddss ..1144

LLeessssoonn 77 –– MMuullttiippllee CCoonnddiittiioonnss ..1166

LLeessssoonn 88 –– UUsseerr DDeeffiinneedd VVaarriiaabblleess ..1188

LLeessssoonn 99 –– TThhee RReesseett MMaaccrroo ..2200

LLeessssoonn 1100 –– UUsseerr DDeeffiinneedd BBiitt VVaarriiaabblleess ..2211

LLeessssoonn 1111 –– CCoonnssttaanntt VVaalluueess ..2233

LLeessssoonn 1122 –– BBaassiicc MMaatthhss OOppeerraattoorrss aanndd NNuummbbeerr FFoorrmmaattss 2255

 TDS CH2 Basic Les (NZC212) Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH2 Basic Les (NZC212)

2-2 BBaassiicc LLeessssoonnss

LLeessssoonn 11 –– TThhee MMaaiinn MMaaccrroo

Now let’s write a very simple program in the main macro to scroll the
text "Hello World" across the display of the meter.

Type the following in the source code editor.

Connect to the Meter

In the first line, type the macro name: MAIN_MACRO:

As you complete the macro name and type the colon, the text changes color to
teal*.

Press Return. In line 2, type: WRITE “Hello World”

As you start to type, the word WRITE changes color to blue*. When you type the
double-quotes the color of the text string (the words enclosed in the double-
quotes) changes to maroon*.

Press Return. In line 3, type: END

As you start to type, the word END changes color to blue*. This is the last line of
the program and defines the end of the main macro.

That’s it!

The Main Macro

Before attempting Lesson 1, we suggest that you connect the meter
to the PC and establish communications.

For full details to connect a meter to a PC and configure the meter in the ASCII
mode, see Serial Communications Module Supplement (NZ202).

Set the Meter to the
ASCII Mode

Make sure the meter is operating in the ASCII mode by setting Code 3
to [XX0]. This setting must be correct before attempting to connect.

The main macro is a small program that is run repeatedly by the meter
10 or 100 times a second depending on how the meter has been con-
figured.

Step 1

Step 2

Step 3

MAIN_MACRO:

WRITE "Hello World"

END

*All colors quoted are default.

 TDS CH2 Basic Les (NZC212) Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com

2-3BBaassiicc LLeessssoonnss

The first line of this macro is the macro name. It tells the TDS program that
you want to place the following source code in the MAIN_MACRO area. The :
(colon) is required to tell the compiler that this is a label as opposed to a
register or a variable, which I’ll explain about later on. There are a number of
pre-defined macro names that exist in the meter and they can all be edited
for a particular application. When any of these names are typed in, the name
turns teal. Each macro name can only be declared once in each program.
See Appendix 1 for a full list of pre-defined macro names.

The WRITE command tells the meter to scroll the text enclosed in quotation
marks across the display. The command WRITE is a keyword and cannot be
used to describe a variable. See Appendix 1 for a full list of keywords.

The last line defines the end of the main macro. The word END signals
the macro engine to stop executing macro code instructions and pass
control back to the operating system of the meter. Each macro must
have at least one END instruction to stop executing the macro, though
some macros may have more than one END instruction.

Now let’s try compiling and downloading
this macro to your meter. Click on the
CCoommppii llee button. When the compiler has
successfully compiled the program, an
Information dialog box appears and informs
you that the macro was compiled success-
fully. Click the OK button.

Pre-defined Macro
Names

End Instruction

The Write Command

When editing macros, if using the drop-down list the macro template labels are
shown in capitols in the Source Code Editor and the pre-defined commands
in capitols bold.

If there is an error in the macro, an Error
dialog box appears informing you which line
is in error. An error message in the mes-
sage window provides a brief description of
the error. Click the OK button to accept
this. The line in error is highlighted. The
error must be corrected before moving on.

If there are no errors, click the DDoowwnnllooaadd
button.

2-4 BBaassiicc LLeessssoonnss

A text string can be up to 100 characters long, and may contain letters, num-
bers, and standard symbols (except the ‘~’ tilde symbol, which is a special
symbol used by the macro in text strings). On some types of displays, some
letters and symbols cannot be displayed and in some cases two display dig-
its are required to display a single letter. For example, the letters M and W.

MAIN_MACRO:

WRITE " ___Hello World " //Scroll Hello World
//across the display

END

Modifying the Text
String

When it has finished you should see the text "Hello World" scroll
across the display. After the text scrolls across the display, the display
flashes back to the meter reading for a second and scrolls again,
repeating this sequence over and over.

CCoonnggrraattuullaattiioonnss!! YYoouu hhaavvee jjuusstt wwrriitttteenn yyoouurr ffiirrsstt mmaaccrroo..

I don’t know about you, but I think the text is quite hard to read
because it starts scrolling before you get a chance to read it!

To solve this problem, let’s modify our program to the following:

Now let’s compile it again and download it.

That’s better! By placing three spaces and three underscores ‘ ___’
before the text and six spaces ‘ ’ after the text, it gives your eyes
a chance to adjust to the movement before you see the text.

Downloading may take a while on larger programs and you may see the
display flicker. Don’t worry, this is quite normal.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH2 Basic Les (NZC212)

2-5BBaassiicc LLeessssoonnss

Adding Comments to
a Program

A // comment can follow a command or be on a separate line. If you
have a comment that you want to be particularly noticeable, this can
be shown as follows:
//

// Scroll Hello World across the display

//

Instead of a comment, a solid line of stars (or another character) can
also be used to indicate a division in more complex code, provided it is
preceded by //.
//**

Notice the two forward strokes // (solidus symbols) on line 2 after the
text string followed by some more text. When the compiler sees the two
forward strokes it ignores everything on that line past that point. This is
used to insert comments into your macro source code to explain what the
macro is doing.

It is always a good idea to include comments in your code. It helps you
and others to understand your code at a later date.

At the beginning of a line you can also use the REM command to start
a comment:
REM Hello_World.bas

REM

REM last revision 2004 August 23

 TDS CH2 Basic Les (NZC212) Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH2 Basic Les (NZC212)

2-6 BBaassiicc LLeessssoonnss

LLeessssoonn 22 –– TThhee IIFF TTHHEENN CCoommmmaanndd
Now let’s try something more useful. Suppose we only wanted to scroll
a message across the display when a particular event or condition is
true. Let’s assume that our meter has been configured to display the
fluid level in a tank in liters. We could write a macro that scrolls a warn-
ing message when the tank reaches 1000 liters. It could look like this:

Adding a Conditional
Test

MAIN_MACRO:

IF &DISPLAY = 1000 THEN // if meter display =

// 1000 then

WRITE " ___Warning – tank is Full "

// scroll text across display

ENDIF

END

In line 2, I have used an IF THEN command that works as follows. If
the condition after the IF instruction is true, THEN all of the instruc-
tions up to the ENDIF instruction are executed. If the condition after
the IF instruction is false, then the next instruction after the ENDIF is
executed.

The ampersand symbol & in line 2 tells the compiler that the word DIS-
PLAY is a predefined register that, in this case, contains the numerical
value that is currently being displayed on the meter.

?

If the compiler cannot find this register in its list of predefined registers (or if
the name is misspelled), it produces an error message in the Status Bar at the
bottom of the Source Code Editor window during compiling.

When the macro runs this code, it looks at the current value on the
display, and if it equals 1000, it scrolls the message " ___Warning
– tank is Full ".

This macro would work well if the tank stopped filling at exactly 1000
liters, but what if it stopped at 1001 liters or just kept on filling? Our
warning might never be seen! We could easily change this macro to
solve this problem.

Line 2

 TDS CH2 Basic Les (NZC212) Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com

2-7BBaassiicc LLeessssoonnss

MAIN_MACRO:

IF &DISPLAY >= 1000 THEN //if meter display
//is >= 1000 then

WRITE " ___Warning – tank is Full "

// scroll text across display

ENDIF

END

Operators In line 2, the equals sign operator = has been changed to a greater than
or equals sign operator >=. Now the message would keep on scrolling if
the tank level is greater than or equal to 1000 liters. Here is a list of
different operators that can be used with the IF THEN instruction.

'=' If equal to.

'<' If less than.

'>' If greater than.

'>=' If greater than or equal to.

'<=' If less than or equal to.

'<> ' or ‘!=’ If not equal to.

In the macro above you may have noticed that I have indented the line
containing the WRITE command by 2 spaces from the IF THEN com-
mand in the line above. This is not mandatory, but it helps to make
your code easier to read and makes it easier to see which ENDIF
belongs to which IF THEN, etc. This will become more obvious later on
when we look at more complicated macros. You can use spaces or tabs
to index text.

Line 2

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH2 Basic Les (NZC212)

2-8 BBaassiicc LLeessssoonnss

LLeessssoonn 33 –– TThhee IIFF TTHHEENN EELLSSEE CCoommmmaanndd
Let’s expand on our previous macro to include two messages instead
of one. We could do this by using an IF THEN ELSE command, as
follows:

Adding a Second
Condition

MAIN_MACRO:

IF &DISPLAY >= 1000 THEN

WRITE " ___Warning – tank is Full "

ELSE

WRITE " ___Tank is still filling "

ENDIF

END

The first three lines of this macro are identical to our previous macro,
but in line 4, I have added an ELSE instruction. Now, if the condition in
line 2 is true, all the code up to the ELSE instruction is executed, and
then the next instruction after the ENDIF is executed. In our simple
macro, we only have one command (i.e. the WRITE command) between
the IF THEN test and the ELSE, but we could have many more com-
mands, including more IF THEN ELSE commands. Later, in Lesson 6,
we discuss nested IF THEN commands in more detail.

If the condition in line 2 is false, then all the instructions between the
ELSE and the ENDIF instructions are executed. Once again, we could
have more than one command between the ELSE and the ENDIF
instruction.

 TDS CH2 Basic Les (NZC212) Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com

2-9BBaassiicc LLeessssoonnss

LLeessssoonn 44 –– TThhee IIFF TTHHEENN EELLSSIIFF CCoommmmaanndd

We could add more conditions to our macro by using the IF THEN
ELSIF command as follows:

MAIN_MACRO:

IF &DISPLAY > 1050 THEN

WRITE " ___Warning – tank is about to over " + \

"flow! "

ELSIF &DISPLAY >= 1000 THEN

WRITE " ___Tank is Full "

ELSE

WRITE " ___Tank is still filling "

ENDIF

END

This macro functions in a similar way to our previous macro except
that now we have two test conditions. If the condition in line 2 is true,
then all the code up to the ELSIF instruction is executed, and then the
next instruction after the ENDIF is executed. If the condition in line 2 is
false and the condition in line 4 is true all the code up to the ELSE
instruction is executed, and then the next instruction after the ENDIF
is executed.

If the conditions in line 2 and line 4 are both false, then all the com-
mands between the ELSE and the ENDIF instructions are executed.

In this example I have only used one ELSIF instruction, but I could have
any number of ELSIFs, one after the other.

The only conditions are that all ELSIF instructions must come after an
IF THEN and all of the ELSIFs must be placed before an ELSE com-
mand.

The ELSE command is optional, so you could have only an IF THEN
instruction followed by one (or more) ELSIF instructions, and then the
ENDIF instruction. If you do use the ELSE instruction, then it must be
used last, just before the ENDIF.

Multiple Test
Conditions

Line 2

Line 3

Line 4

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH2 Basic Les (NZC212)

2-10 BBaassiicc LLeessssoonnss

At the end of line 3 you’ll notice the symbols + \ after the text string,
followed by some more text on line 4 . The + symbol can be used with
the WRITE command to tell the compiler that there is more text to be
added to this string (we’ll look at this in more detail when we get to
Lesson 30). The \ symbol can be used with long command lines to
make the code easier to read. It simply tells the compiler that there is
more information for this command on the next line. When the compiler
sees the \ symbol, it stops compiling and continues on the next line.
The \ symbol can be used as many times as you require in a single
command.

The use of the \ symbol is optional. The compiler still works with long
command lines but you will have to use the scroll bar at the bottom of
the source code editor to view all of the text.

 TDS CH2 Basic Les (NZC212) Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com

2-11BBaassiicc LLeessssoonnss

LLeessssoonn 55 –– RReeggiisstteerrss aanndd BBiitt FFllaaggss

In our previous macros we have used a pre-defined register called &DIS-
PLAY, which contains a numerical value corresponding to the reading
on the front of the meter. The meter contains many different pre-
defined registers, several thousand in fact! But don’t worry, for most
macros you will only need a small number of these.

In the pre-defined variables window, you will see a list of the available
pre-defined registers laid out in a tree view style menu. Each pre-
defined register holds data relating to a different function in the meter.
The size of the pre-defined registers vary between 8-bits, 16-bits, and
32-bits, and the format of the data might be in fixed point or floating
point. For most macros you don’t have to worry about this because
the macro engine in the meter knows exactly how to handle each pre-
defined register.

You will have to know a little about which registers to use in a macro.
To help you with this, you can read a brief explanation about each pre-
defined register by holding your mouse pointer over the register name
in the tree view register list in the pre-defined variables window.

Pre-defined Variables

For more information on program navigation, see Getting Around in the TDS
Program in Chapter 1.

As stated earlier, every time you use a pre-defined register you must
put an ampersand & in front of the register name to tell the compiler
that this is a predefined register.

A quick way to insert a pre-defined register label into your program is
to set the cursor to the position in the source code editor window
where you want to insert the register name. Then find the register
name in the list and double-click on it. It is automatically inserted into
your source code with an & in front of it!

Inserting Pre-defined
Registers

As you look down the list of pre-defined registers you will also see
some pre-defined bit flags (see the tree view legend). These are similar
to pre-defined registers. The only difference is that these are only one
bit wide, meaning that their data range is only from 0 to 1, or ‘OFF’
and ‘ON’. They are usually associated with digital input pins, front panel
buttons, relays, etc. Let’s re-write the macro we used in Lesson 4
using setpoints instead of checking the level ourselves. I’ll assume that
we have programmed setpoint 1 to 1050 for the overflow level, and
setpoint 2 to 1000 for the full level. This is how it looks:

Pre-defined Bit Flags

You will see that only lines 2 and 5 have changed. In line 2, I am test-
ing the bit flag |SP1 to see if it is ON or OFF. The ‘|’ symbol tells the
compiler that |SP1 is a bit flag that has only two possible states, ON or
OFF. |SP1 is a flag that shows the status of setpoint 1. If it is ON it
means that setpoint 1 has been activated.

A similar test is done in line 5 but this time on |SP2, which is the sta-
tus flag for setpoint 2.

Functionally our new macro is the same as the one we wrote in Lesson
4, however, it has a few advantages in practice. If the tank levels need
to be changed in the Lesson 4 macro, then the macro needs to be re-
written. With our new macro, the setpoints can be easily changed from
the front panel of the meter and our macro still works correctly. Also,
now we have 2 relays switching at these levels that could be used to
turn off a valve or start up a pump, etc.

MAIN_MACRO:

IF |SP1 = ON THEN // if setpoint 1 has activated

WRITE " ___Warning – tank is about to over" +\

"flow! "

ELSIF |SP2 = ON THEN // if setpoint 2 has activated

WRITE " ___Tank is Full "

ELSE

WRITE " ___Tank is still filling "

ENDIF

END

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH2 Basic Les (NZC212)

2-12 BBaassiicc LLeessssoonnss

Line 2

Line 3

Line 5

 TDS CH2 Basic Les (NZC212) Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com

2-13BBaassiicc LLeessssoonnss

In most cases, bit flags are only tested for two possible states, ON or
OFF. However, some bit flags have a third special state called NORMAL.
This is used with bit flags that are normally controlled by the meter,
but can also be used in a remote mode.

For example, in the previous macro, we are only testing the bit flag
|SP1. The flag itself is controlled by the meter being set or cleared,
depending on the input signal, the value of the setpoint, etc. So we
would only need to test this flag for an ON or an OFF state. This is the
normal mode of operation.

However, in some macros it might be necessary for the macro to take
control of a particular setpoint, either continuously, or for a short peri-
od. Here’s a simple macro that shows how this is done:

MAIN_MACRO:

IF &DISPLAY > 1050 THEN

WRITE " ___Turning pump on "

|SP1 = ON //macro takes control
//of SP1 and turns it on

ELSE

|SP1 = NORMAL //returns control of SP1 to
//setpoint logic in meter

ENDIF

END

In line 4, the instruction |SP1 = ON tells the compiler to put setpoint
1 into the remote mode and turn it on. In this mode, the setpoint logic
in the meter no longer has any control over the setpoint and it remains
on until the macro changes.

In line 7, the instruction |SP1 = NORMAL tells the compiler to put set-
point 1 back into the normal mode of operation, where the setpoint is
controlled by setpoint logic in the meter.

This special case applies to |SP1 to |SP6 and |LED1 to |LED6.

Line 4

Line 5

Line 7

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH2 Basic Les (NZC212)

2-14 BBaassiicc LLeessssoonnss

LLeessssoonn 66 –– NNeesstteedd IIFF TTHHEENN CCoommmmaannddss

Well that’s all there is to the IF THEN type command! Of course, in
practice you will probably find that there is more code between each of
the tests. Often you will also need to test more than one condition
before doing a certain task.

The way that the TDS does this is by allowing multiple IF THEN com-
mands. These are referred to as nested IF THEN commands. Let’s
have a look at how this works:

In the macro above, the text "Warning – tank is about to over
flow!" is only displayed if setpoint 1 is ON and setpoint 3 is ON and
setpoint 4 is OFF. The text "Sorry, but you’ve got a big mess
to clean up!" is only displayed if setpoint 1 is ON and setpoint 3 is
ON and setpoint 4 is ON.

MAIN_MACRO:

IF |SP1 = ON THEN // if setpoint 1 is activated and

IF |SP3 = ON THEN //if setpoint 3 is

//activated and

IF |SP4 = OFF THEN //if setpoint 4 is
//de-activated

WRITE " ___Warning – tank is about to " + \
" over flow! "

ELSE

WRITE " ___Sorry, but you’ve got a big " + \
"mess to clean up! "

ENDIF

ENDIF

ELSIF |SP2 = ON THEN // if setpoint 2 has activated

WRITE " ___Tank is Full "

ELSE

WRITE " ___Tank is still filling "

ENDIF

END

Nested IF THEN
Commands

 TDS CH2 Basic Les (NZC212) Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com

2-15BBaassiicc LLeessssoonnss

The logic for nested IF THEN commands is exactly the same as the
previous lessons. You can use ELSIF and ELSE with nested IF THEN
commands provided that you keep to the same rules mentioned in
Lessons 2 to 4. The main thing to remember is that for each IF THEN
command, you must have an ENDIF instruction. If a condition is true,
then the code under that condition is executed up until the next
ELSIF, ELSE, or ENDIF instruction. If you try to compile a macro that
has an unequal number of IF THEN and ENDIF instructions, the compil-
er displays an error.

The TDS program has some handy features to ensure that you always
have the right number of ENDIFs. When you want to insert a new IF
THEN command, position the cursor where you want the command to
start and then right-click. This brings up a selection of templates. Left-
click on the command you want and the editor inserts it into your code
along with the ENDIF command! Now all you need to do is fill in the
blanks. If you use this feature each time you start a new command, you
won’t have the problem of inadvertently forgetting an ENDIF command.

1) Place the cursor where you want the
new IF THEN command to start.

2) Click the right-hand mouse button.

A selection of commands appear.

3) Left click the selection you want.

The editor inserts it into your code
along with the ENDIF command.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH2 Basic Les (NZC212)

2-16 BBaassiicc LLeessssoonnss

In Lesson 6, I explained how nested IF THEN commands can be used to
test for several conditions. Unfortunately, this tends to become hard to
follow. Have a look at the following main macro to see what I mean:

LLeessssoonn 77 –– MMuullttiippllee CCoonnddiittiioonnss

MAIN_MACRO:

IF |SP1 = on THEN // if setpoint 1 is

// activated and

IF |SP3 = ON THEN // if setpoint 3 is
// activated and

IF |SP4 = OFF THEN // if setpoint 4 is

// deactivated

WRITE " over flow! "

ENDIF

// or if capture pin is connected to common

IF |CAPTURE_PIN = ON THEN

WRITE " over flow! "

ENDIF

ENDIF

ENDIF

END

MAIN_MACRO:

IF |SP1 = ON AND |SP3 = ON AND \

(|SP4 = OFF OR |CAPTURE_PIN = ON) THEN

WRITE " over flow! "

ENDIF

END

With newer compiler versions you can test for multiple conditions. Single
conditions can be logically combined using AND, OR, and parentheses. So
we can now rewrite the above macro to look like this:

In this macro, it doesn't matter if setpoint 4 is deactivated or if the
capture pin is activated, in either case the overflow message is written
but this is not obvious.

 TDS CH2 Basic Les (NZC212) Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com

2-17BBaassiicc LLeessssoonnss

MAIN_MACRO:

IF (&DISPLAY AND 0x00000001) = 0 THEN

// display value is even

ENDIF

END

CAUTION:
AND and OR coincide with the logical bit operators. Therefore, logical bit
operations have to be put inside parentheses in conditions:

Well, I don’t know about you, but this seems much simpler to me! Now
we have used only one IF THEN command, which says:

IF ISP1 and ISP3 are both ON, and IF ISP4 = OFF or the |CAPTURE_PIN
is ON, then display the message “over flow!”.

We will look at this in more detail in Lesson 32.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH2 Basic Les (NZC212)

2-18 BBaassiicc LLeessssoonnss

LLeessssoonn 88 –– UUsseerr DDeeffiinneedd VVaarriiaabblleess

Often when writing a macro you will find that you need somewhere to
temporarily store a data value so that you can use it later in your
macro. In the TDS these are called user defined variables. When you
define one of these variables, the TDS reserves some memory in RAM
to store your data. You can define a variable using any name you wish
provided it is not a keyword (see Appendix A for a list of keywords).
Your name can include letters, numbers, and underscores _, provided
the first character in the name is always a letter.

User defined variables are prefixed with a pound sign ‘#’ or percent
sign ‘%’ depending on what type of variable you need. The ‘#’ indicates
that your variable is a fixed-point number, meaning that it can contain
any integer between –2147483648 and 2147483647. The ‘%’ indi-
cates that your variable is a single precision floating point number
between +/- 1.175494e-38 and +/-3.402823e+38.

Let’s write a simple macro that uses both predefined registers and user
defined variables:

In line 2, I have generated a variable called MY_RESULT and because I
only want an integer result, I have placed a # symbol in front of it. I
have then made the variable #MY_RESULT equal to the sum of the two
predefined registers &CH1 and &CH2 (which happen to be channel 1 and
channel 2 data registers respectively).

User Defined
Variables

MAIN_MACRO:

#MY_RESULT = &CH1+&CH2 //define a variable
//called MY_RESULT

IF #MY_RESULT < 10000 THEN // test MY_RESULT

WRITE " ___Tank is still filling "

ELSE

WRITE " ___Tank is Full "

ENDIF

END

Line 2

Line 4

 TDS CH2 Basic Les (NZC212) Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com

2-19BBaassiicc LLeessssoonnss

MAIN_MACRO:

&CH1 = #MY_RESULT+&CH2

IF #MY_RESULT < 10000 THEN

WRITE " ___Tank is still filling "

ELSE

WRITE " ___Tank is Full "

ENDIF

#MY_RESULT = &CH3+&CH2

END

Then, in line 4 I am testing the variable #MY_RESULT with an IF THEN

instruction in the same way that we did earlier on with predefined reg-
isters. In fact, once you have defined a variable, you can use it in the
same way as a predefined register, provided you always add the appro-
priate prefix (‘#’ or ‘%’).

You can include up to 10 different integer variables and up to 8 differ-
ent floating point variables (20 integer and 16 floating point variables
in the Tiger 380) in your macro. If you try to use more than this, you
will generate a compiler error.

An important point to note is that you must always define a variable as
equal to some value before you use it in an expression or as part of a
conditional instruction.

Try compiling the following macro:

You should find that the compiler comes up with an error in line 2.
That’s because the TDS is a single pass compiler and when it gets to
line 2 it hasn’t allocated the name #MY_RESULT to a memory location
yet, so it doesn’t recognize it! The next lesson looks at the
RESET_MACRO which should solve this problem.

Line 2

2-20 BBaassiicc LLeessssoonnss

LLeessssoonn 99 –– TThhee RReesseett MMaaccrroo

All of the macros we have looked at so far have been written for the
MAIN_MACRO. As we mentioned at the beginning of this chapter, the
MAIN_MACRO is run (or called) repeatedly by the meter, 10 or 100
times a second, depending on how the meter has been set up. Now
we’ll look at a different macro area called the RESET_MACRO. As you
might have guessed from the name, this macro is only run once, when
the meter is first turned on. It’s purpose is to initialize any registers or
variables at power-up so that the meter and macros always start oper-
ating from a known state. In many macros you won’t need to worry
about this, but in others you will. Let’s take the second macro from
Lesson 8 and include a RESET_MACRO to define the variable
#MY_RESULT as being equal to ZERO initially.

RESET_MACRO:

#MY_RESULT = 0 //define a variable
//called MY_RESULT

END

MAIN_MACRO:

&CH1 = #MY_RESULT+&CH2

IF #MY_RESULT < 10000 THEN

WRITE " ___Tank is still filling "

ELSE

WRITE " ___Tank is Full "

ENDIF

#MY_RESULT = &CH3+&CH2

END

Now this will compile okay. Remember, because you need to define
your variables before you use them in an equation or test, the
RESET_MACRO should be placed before any other macros in your file.

The only difference between the RESET_MACRO and the MAIN_MACRO is
when it is run (or called) by the meter. Apart from that, they are both
capable of executing the same commands. You could write any macro
you want and place it in the RESET_MACRO. When you switch on the
meter it would run your macro once!

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH2 Basic Les (NZC212)

 TDS CH2 Basic Les (NZC212) Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com

2-21BBaassiicc LLeessssoonnss

In Lesson 8, I introduced user defined variables for integer and floating
point values. But in many applications you only want to store whether a
condition is met or not – or in terms of programming languages whether it
is true or false. Of course you could use an integer variable and set it to 1
or 0 respectively. This would work out fine for macros where you don't
need many variables. But you would also use up a 32-bit register to store a
single bit. The simple solution for this problem is user defined bit variables.

User defined bit variables are prefixed with an '|' symbol (just like bit regis-
ters) with the same restrictions to its name as user defined variables: any
mixture of letters, numbers, and underscores _, provided the first charac-
ter in the name is always a letter. The allowed values are on or true and
off or false.

LLeessssoonn 1100 –– UUsseerr DDeeffiinneedd BBiitt VVaarriiaabblleess

RESET_MACRO:

// initialize bit variables

|OPERATION_COMPLETE = false

|LED1_AT_RESET = off

IF |LED1 = on THEN

|LED1_AT_RESET = on

ENDIF

|LED1 = off

END

MAIN_MACRO:

IF &CH1 < 0 AND (|HOLD_PIN = off OR |LOCK_PIN = off) \
THEN

|OPERATION_COMPLETE = true

ENDIF

IF |OPERATION_COMPLETE = true THEN

WRITE " Operation complete "

IF |LED1_AT_RESET = on THEN

|LED1 = on

ENDIF

ENDIF

END

Line 6

Line 7

Line 8

Line 20

Line 21

Line 22

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH2 Basic Les (NZC212)

2-22 BBaassiicc LLeessssoonnss

CAUTION:

You can include up to 32 different bit variables in your macro that will
actually use up a single integer variable. If you try to use more than
this, you will generate a compiler error.

RESET_MACRO:

// initialize bit variables

|OPERATION_COMPLETE = false

|LED1_AT_RESET = |LED1

|LED1 = off

END

MAIN_MACRO:

IF &CH1 < 0 AND (|HOLD_PIN = off OR |LOCK_PIN = off)\
THEN

|OPERATION_COMPLETE = true

ENDIF

IF |OPERATION_COMPLETE = true THEN

WRITE " Operation complete "

|LED1 = |LED1_AT_RESET

ENDIF

END

In lines 6-8 of the previous macro, the value of a bit register is stored
in a bit variable and its value is restored in lines 20-22. As this is rather
common, the TDS allows you to equate one bit variable to another one.
Look at the next macro to see what I mean:

Line 4

Line 17

In lines 4 and 17 I have replaced other IF THEN commands with a line
| which simply makes one bit variable equal to another one.

 TDS CH2 Basic Les (NZC212) Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com

2-23BBaassiicc LLeessssoonnss

LLeessssoonn 1111 –– CCoonnssttaanntt VVaalluueess

MAIN_MACRO:

IF &TIMER1 > 8 * 60 * 60 * 10 THEN //8 hour timeout

WRITE " Maximum runtime exceeded "

ELSIF &TIMER2 > 24 * 60 * 60 * 10 THEN //24 hour

//timeout

WRITE " Shut down meter "

ENDIF

END

In this macro, the timeouts for &TIMER1 and &TIMER2 are measured in
hours, but because these timers count in 0.1 second steps, an 8 hour
time period is shown as 8 (hrs) x 60 (mins) x 60 (secs) x 10 (0.1
secs). Now let's assume you want to test the macro. Of course you
don't want to wait for these long timeouts. So you could change both
timeout values for testing and then change them back to the correct
values after you have finished you testing. That is fine if you only have
two values to change. However, imagine that you use the same timers
many times over in your macro. Changing them all is very laborious and
opens up the possibility of missing one and creating a bug in the oper-
ation of your macro which will not be detected during testing!

User defined constants allow you to associate a constant number value
(integer or floating point) with a name which can be used in its place.
The name has no prefix and can be any combination of letters, num-
bers, and underscores _, provided the first character in the name is
always a letter. The definition can be inside or outside a macro.

So let's see what we have to change for testing:

Most macro’s include numbers in the source code. These numbers are
referred to as constants because once the source code is compiled,
their value does not change. Constants may form part of an IF THEN
command or they may be part of a mathematical equation. It is quite
common to use the same constant value several times in different
parts of the macro. Lets look at the following macro:

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH2 Basic Les (NZC212)

2-24 BBaassiicc LLeessssoonnss

// CONST Time_unit = 60 * 60 * 10 // 1 hour

CONST Time_unit = 60 * 10 // 1 minute – only for
// testing

CONST MaxRunTime = 8 * Time_unit

CONST MaxOperationTime = 24 * Time_unit

MAIN_MACRO:

IF &TIMER1 > MaxRunTime THEN //8 hour timeout

WRITE " Maximum runtime exceeded "

ELSIF &TIMER2 > MaxOperationTime THEN //24 hour

//timeout

WRITE " Shut down meter "

ENDIF

END

User defined constants can be used just like the number value they are
associated with, even in calculations. In the macro above you will see in
line 2 the constant Time_unit is defined as 60 x 10 (or 1 minute) for
testing purposes only. Then in lines 4 and 5 the constants MaxRunTime
and MaxOperationTime both use the constant Time_unit as part of
their calculations.

When you have finished your testing, just remove the ‘//’ marks at the
beginning of line 1 and delete (or comment out) line 2. Re-compile the
macro and now you can be sure that all references in your macro to
these times will be correct.

If you define a constant as the result of a calculation the value will be
calculated only once at compile time.

Constants can also be used to make your code more readable. In
Lesson 21, I will show you how to use constants to define different
operating states of a macro instead of just using numbers.

Line 2

Line 4

Line 5

 TDS CH2 Basic Les (NZC212) Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com

2-25BBaassiicc LLeessssoonnss

LLeessssoonn 1122 –– BBaassiicc MMaatthhss OOppeerraattoorrss aanndd NNuummbbeerr FFoorrmmaattss
Most of the macros we have written up until now have been designed
to display text messages on the display when a certain condition is sat-
isfied. Another powerful feature of the macro engine is the ability to
apply a mathematical equation to your input data and display a more
meaningful result. You can use any of the following basic maths opera-
tors in your macro (You can also use higher maths operators, but we’ll
discuss these later in Lesson 31):

+ Addition

- Subtraction

* Multiplication

/ Division

()Parentheses

^ Power of

All of these operators require two operands. For example, I could write
a macro like this:

MAIN_MACRO:

#COMPENSATION = (&CH2 + &CH3) * 0.1234

IF #COMPENSATION < 10000 THEN

&RESULT = &CH1 * (#COMPENSATION – 10000)/10000

ELSE

&RESULT = &CH1 ^ #COMPENSATION

ENDIF

END

In line 2, I have defined the variable COMPENSATION to be equal to the
sum of &CH2 plus &CH3, times 0.1234. The parenthesis tells the com-
piler to add &CH2 and &CH3 first, and then multiply the sum by 0.1234.
Up to 10 levels of parenthesis can be used, depending on the complex-
ity of the equations within the parenthesis.

The line under ELSE makes &RESULT equal to &CH1 to the power of the
variable #COMPENSATION.

Operators

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH2 Basic Les (NZC212)

2-26 BBaassiicc LLeessssoonnss

Notice also how I have multiplied the sum of &CH2 + &CH3 by a floating
point number (0.1234) in line 2, but I have defined #COMPENSATION as
an integer with the ‘#’ symbol. This is quite acceptable, as the macro
engine automatically converts the result from a floating point format
to an integer format (fixed point) before saving it in the variable
#COMPENSATION. Of course, in doing this, any fractional part of the
result is lost, but for our macro, this is not important. If I wanted to
retain the fractional part as well, I could have written:

MAIN_MACRO:

%COMPENSATION = (&CH2 + &CH3) * 0.1234

IF %COMPENSATION < 10000 THEN

&RESULT = &CH1 * (%COMPENSATION – 10000)/10000

ELSE

&RESULT = &CH1 ^ %COMPENSATION

ENDIF

END

In the TDS, numeric constants can be entered in several different ways.
A number by itself, or with a decimal point, will be interpreted as a
decimal number. A number with a ‘0x’ in front of it will be interpreted
as a base 16 hexadecimal number. Numbers can also be entered with
an exponent. Here are some examples.

56 Decimal integer

0153 Octal (base 8)

0x3C Hexadecimal (base 16)

0xa6 Hexadecimal (base 16)

1.234 Decimal floating point

0.03693E12 Decimal with exponent

1.572e-8 Decimal with exponent

Decimal numbers that are integers can be in the range of
–2147483648 to 2147483647. Decimal numbers that contain a frac-
tional part can be in the range of +/-1.175494E-38 to +/-
3.402823E+38.

Hexadecimal numbers can be in the range of 0x0 to 0xFFFFFFFF.

Numeric Constants

Line 2

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3IInntteerrmmeeddiiaattee LLeessssoonnss

LLeessssoonn 1133 –– TThhee EEDDIITT MMooddee ..22

LLeessssoonn 1144 –– NNoonn--VVoollaattii llee UUsseerr MMeemmoorryy ..77

LLeessssoonn 1155 –– RReeddeeffiinniinngg RReeggiisstteerr NNaammeess ..1100

LLeessssoonn 1166 –– TThhee CCuussttoommeerr IIDD MMaaccrroo ..1122

LLeessssoonn 1177 –– FFuunnccttiioonn BBuuttttoonn MMaaccrrooss ..1144

LLeessssoonn 1188 –– TTeexxtt SSttrriinnggss ..1177

LLeessssoonn 1199 –– TTeexxtt SSttrr iinngg AArrrraayyss ..2211

LLeessssoonn 2200 –– EEddiitt SSttrr iinngg AArrrraayyss ..2255

LLeessssoonn 2211 –– TThhee SSEELLEECCTT CCAASSEE SSttaatteemmeenntt ..2277

LLeessssoonn 2222 -- TThhee GGOOSSUUBB CCoommmmaanndd ..3311

LLeessssoonn 2233 –– TThhee RREEPPEEAATT UUNNTTIILL LLoooopp ..3344

LLeessssoonn 2244 –– TThhee FFOORR NNEEXXTT LLoooopp ..3366

LLeessssoonn 2255 –– EExxpprreessssiioonnss iinn IIFF EELLSSIIFF CCoommmmaannddss ..3388

LLeessssoonn 2266 –– NNuummbbeerr AArrrraayyss aanndd RReeggiisstteerr AArrrraayyss ..3399

LLeessssoonn 2277 –– RReeddeeffiinniinngg RReeggiisstteerrss aass BBiitt AArrrraayyss ..4444

LLeessssoonn 2288 –– DDaattaa SSoouurrccee RReeggiisstteerrss ..4466

LLeessssoonn 2299 –– PPrreesseettttiinngg RReeggiisstteerrss ..4499

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-2

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

LLeessssoonn 1133 –– TThhee EEDDIITT MMooddee
So far, all of the macros we have looked at have used registers or flags
that are updated automatically by the meter without any user interven-
tion. Now let’s look at an application that requires the user to adjust a
parameter via the front panel buttons of the meter.

Let’s suppose that our meter is measuring a variety of gases. For each
type of gas, the user must enter a compensation factor from the front
panel buttons. For this type of application, we need to be able to do
the following:

1) Press a button to enter an editing mode.

2) Display a parameter to be edited.

3) Display some text to describe what the parameter is.

4) Use the UP and DOWN buttons to adjust the parameter.

5) Limit the adjustment range of the parameter being edited.

6) Press a button to store the edited value and return to the normal
display when we have finished editing.

We could probably write a macro to do all of this in the MAIN_MACRO,
but it would become fairly lengthy and quite complex. To make things
easier, the TDS includes a special mode called the eeddiitt mmooddee that
allows many of the above functions to be handled automatically by the
meter. Let’s write a macro and see how the edit mode works:

MMaaccrroo ssttaarrttss oonn nneexxtt ppaaggee

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-3IInntteerrmmeeddiiaattee LLeessssoonnss

RESET_MACRO:

#SENSOR_TYPE = 1 //at power up always start
//with sensor 1

END

MAIN_MACRO:

IF |PROG_BUTTON = ON THEN //if the Prog button has
//been pressed

IF &STATE = 0 THEN

&STATE=1 //used to keep track of
//operational state

EDIT #SENSOR_TYPE

&EDIT_MAX = 4 //maximum value = 4

&EDIT_MIN = 1 //minimum value = 1

&EDIT_DEF = 1 //default value = 1

//(Up & Down pressed together)

WRITE "Sensor" // this flashes on the display

ENDIF

ENDIF

END

EDIT_MACRO:

//This macro is run each time the Prog button is
//pressed in edit mode

IF &STATE = 1 THEN

EXIT_EDIT #SENSOR_TYPE

// &STATE = 0

ENDIF

END

In the first 3 lines I have used the RESET_MACRO to define a variable
called #SENSOR_TYPE, which we will use to store the currently selected
sensor type. When the meter is switched on, we’ll set the sensor type
to a default value of 1.

The MAIN_MACRO continuously checks the bit flag |PROG_BUTTON to
see when the PROGRAM button has been pressed. If the PROGRAM but-
ton is pressed, the macro then checks a predefined register called
&STATE. This is used to keep track of which operational state our
macro is currently in.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-4

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

Although our simple macro only has two states (0 = normal display, 1 =
edit sensor), it is not uncommon for macros to have many more.

If the program button is pressed while the operational state is zero (i.e.
normal display mode), then &STATE is changed to 1, to signify that the
meter is now in the edit sensor mode.

By the way, you can use any number you like for the edit sensor state,
but you should always use zero for the normal operating state of the
meter.

On the next line, you will see the command EDIT #SENSOR_TYPE. The
word EDIT is the command that puts the meter into the special edit
mode. The variable or pre-defined register name that follows the edit
command tells the macro what to edit. In this case we have told the
macro to edit the variable #SENSOR_TYPE, so it will automatically load
the current value of the user defined variable #SENSOR_TYPE into its
edit buffer. The edit command can be used with any user defined regis-
ter or pre-defined register from the tree view list in the pre-defined
variables window, or constant value. For example, I could have written:

EDIT &CH1

The next 3 lines below the EDIT command are used to specify the
editing range that you want. The pre-defined register &EDIT_MAX is
loaded with the maximum value that you want to allow for the editable
range. The pre-defined register &EDIT_MIN is loaded with the minimum
value that you want to allow for the editable range. The pre-defined
register &EDIT_DEF is loaded with a default value. The edit value will be
set to the default value when both the UP and DOWN buttons are
pressed together in the edit mode. This provides a quick method of
getting to a normal value when in the edit mode.

The final command in the MAIN_MACRO is WRITE “Sensor”. This causes
the text ‘Sensor’ to flash (or scroll) alternately with the edit value.

That’s all there is to getting into the edit mode! The meter will be
flashing between ‘Sensor’ and ‘1’ and it will keep flashing until you
change the value by pressing the UP or DOWN button. Remember that
while this is happening, the meter is operating in a special edit mode,
not it’s normal mode of operation.

Enter the Edit Mode

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-5IInntteerrmmeeddiiaattee LLeessssoonnss

You will notice that our macro doesn’t finish with the MAIN_MACRO, but
includes another type of macro area called the EDIT_MACRO. The
EDIT_MACRO is only used while the meter is operating in edit mode, and
is called once, each time the PROGRAM button is pressed.

In this case, the edit macro checks to see what operating state we are
in. If &STATE is equal to 1 (i.e. edit sensor type), then the command
EXIT_EDIT #SENSOR_TYPE is executed. The EXIT_EDIT command is
used to end the edit mode and return to the normal operating mode of
the meter. At the same time, it will store the newly edited data value
into the register or variable name specified with the command. So in
our macro, it will store the edited value back into #SENSOR_TYPE. The
EXIT_EDIT command will also set &STATE back to zero (normal operat-
ing mode), so we don’t need a separate line that reads &STATE = 0.

That’s it! Once in edit mode, the meter handles most of your editing
requirements automatically. I think you should download this one and
try it out!

Well, what happened? You should find that it worked quite well, up until
the point at which you pressed the PROGRAM button to save your edit-
ed value and return to the normal display mode. You probably had
great difficulty exiting the edit mode, and could only do it if you
pressed the Program button really fast!

This is because the MAIN_MACRO is operating so fast, that by the time
you have lifted your finger off the PROGRAM button to exit the edit
mode, the MAIN_MACRO sees the PROGRAM button still pressed and
goes straight back into it.

There is a very simple fix for this. The meter contains two predefined
registers called &TIMER1 and &TIMER2 that you can use in your macro.
Both of these registers count up 1 count every 0.1 seconds. You can
read or write to these timers whatever you like. Let’s re-write our
macro using a timer to solve our problem.

?

MMaaccrroo ssttaarrttss oonn nneexxtt ppaaggee

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-6

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

RESET_MACRO:

#SENSOR_TYPE = 1 //at power up always start
//with sensor 1

END

MAIN_MACRO:

IF |PROG_BUTTON = ON THEN //if the Prog button has
//been pressed

IF &STATE = 0 THEN

IF &TIMER1 > 10 THEN //if timer1 > 1 second
//then

&STATE=1 //used to keep track of
//operational state

EDIT #SENSOR_TYPE

&EDIT_MAX = 4 // maximum value = 4

&EDIT_MIN = 1 // minimum value = 1

&EDIT_DEF = 1 // default value = 1
//(Up & Down pressed together)

WRITE "Sensor" // this flashes on the display

ENDIF

ENDIF

ENDIF

END

EDIT_MACRO:

//This macro is run each time the Prog button is
//pressed in edit mode

IF &STATE = 1 THEN

EXIT_EDIT #SENSOR_TYPE

//&STATE = 0

&TIMER1 = 0 //set timer1 to zero to stop
//going back into edit mode

ENDIF

END

That’s better! All I have done is to set &TIMER1 to zero when I exit the
edit mode, and check that &TIMER1 is greater than 1 second (10 x
0.1) before entering the edit mode. This means that the macro won’t
re-enter the edit mode until 1 second after it exits the edit mode.

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-7IInntteerrmmeeddiiaattee LLeessssoonnss

LLeessssoonn 1144 –– NNoonn--VVoollaattiillee UUsseerr MMeemmoorryy
In our previous macro, we defined a variable called #SENSOR_TYPE that
we edited from the front panel. All user defined variables are stored in
RAM, which means that their contents are lost when the meter is
switched off. In our previous macro we used the RESET_MACRO to set
#SENSOR_TYPE to 1 each time the meter is turned on. This might be
OK for some applications, but for many this would be a nuisance.

To solve this problem, the meter includes a bank of pre-defined regis-
ters that retain their contents, even when the meter is switched off
(i.e. non-volatile registers). If you look down the tree view list of pre-
defined variables, you will see UUsseerr at the bottom of the tree. Click on
the + sign beside User. This opens a sub-set list with MMeemmoorryy at the
top of the list. Click on the + sign beside Memory to get a list of regis-
ters. There are 1024 of these registers available for data storage,
setup information, or tables. Each register is a 16-bit signed register.
This means it can hold a value from –32768 to 32767.

Let’s re-write the previous macro to use a non-volatile user memory to
store the sensor type:

MMaaccrroo ssttaarrttss oonn nneexxtt ppaaggee

User
Memory

Sub-sets

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-8

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

MAIN_MACRO:

IF |PROG_BUTTON = ON THEN //if the Prog button
//has been pressed

IF &STATE = 0 THEN

IF &TIMER1 > 10 THEN //if timer1 > 1 second
//then

&STATE=1 //used to keep track of
//operational state

EDIT &USER_MEMORY_1 //user memory 1 =

//sensor type

&EDIT_MAX = 4 //maximum value = 4

&EDIT_MIN = 1 //minimum value = 1

&EDIT_DEF = 1 //default value = 1
//(Up & Down pressed together)

WRITE "Sensor" // this flashes on the display

ENDIF

ENDIF

ENDIF

END

EDIT_MACRO:

//This macro is run each time the Prog button is
//pressed in edit mode

IF &STATE = 1 THEN

EXIT_EDIT &USER_MEMORY_1 //exit edit mode, save
//sensor type in user memory 1

//&STATE = 0

&TIMER1 = 0 //set timer1 to zero to stop
//going back into edit mode

ENDIF

END

Now we don’t need to use the RESET_MACRO to initialize the value of
sensor type because the last value is retained in &USER_MEMORY_1.

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-9IInntteerrmmeeddiiaattee LLeessssoonnss

One important point to note about the user memories on the Tiger
320 is that there is a limited number of times that you can write to
these registers. Because they are stored in Electrically Erasable memo-

ry (E2), you must not exceed 100,000 write cycles. That all sounds
quite technical, but what it really means is that you must not update a
user memory every time the MAIN_MACRO is called. If you did, you
would find that after a short period of time, the user memory might
not reliably store your data.

You can read a user memory as many times as you like. So that means
you could use a user memory as part of a calculation or as part of a
lookup table, as many times as you like. In the macro above,
&USER_MEMORY_1 is updated in the line EXIT_EDIT &USER_MEMORY_1.
This is only used when the sensor type is changed, so the user of this
macro could change the sensor type 100,000 times before they would
have a problem!

In the Tiger 380 the user memories are stored in RAM and backed up
in FRAM. Therefore the number of writes is not limited in the 380
series.

Please refer to Lesson 43 for further changes regarding the user mem-
ories in the 380.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-10

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

LLeessssoonn 1155 –– RReeddeeffiinniinngg RReeggiisstteerr NNaammeess

Sometimes it may be more convenient to give pre-defined registers dif-
ferent names that relate directly to an application. For example, chan-
nel 1 of our meter might be measuring pressure, channel 2 might be
measuring flow rate, and channel 3 temperature. Or maybe you’re
using a large number of user memories and it’s hard to remember what
the function of each one is.

The TDS allows you to re-assign new names to pre-defined registers
and bit flags. Let’s take the previous macro from Lesson 14 and
rewrite it with more meaningful register names. Here’s how it works:

REG &SENSOR_TYPE = &USER_MEMORY_1

BIT |SELECT = |PROG_BUTTON

MAIN_MACRO:

IF |SELECT = ON THEN //if the Select button
//has been pressed

IF &STATE = 0 THEN

IF &TIMER1 > 10 THEN //if timer1 > 1 second
//then

&STATE=1 //used to keep track of
//operational state

EDIT &SENSOR_TYPE //user memory 1 = sensor
//type

&EDIT_MAX = 4 //maximum value = 4

&EDIT_MIN = 1 //minimum value = 1

&EDIT_DEF = 1 //default value = 1
//(when Up & Down are pressed together)

WRITE "Sensor" //this flashes on the display

ENDIF

ENDIF

ENDIF

END

Line 2

MMaaccrroo ccoonnttiinnuueedd oonn nneexxtt ppaaggee

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-11IInntteerrmmeeddiiaattee LLeessssoonnss

In the first line, you will see the word REG, followed by &SENSOR_TYPE
= &USER_MEMORY_1. This tells the compiler to substitute the register
&USER_MEMORY_1, whenever it sees the register called &SENSOR_TYPE.

Similarly, on line 2 the word BIT followed by |SELECT = |PROG_BUT-
TON, tells the compiler to substitute the bit flag |PROG_BUTTON, when-
ever it sees the flag |SELECT.

You must position the re-definitions before the point in your program
where you use the new register names, otherwise the compiler won’t
be able to recognise them.

EDIT_MACRO:

//This macro is run each time the select button is
//pressed in edit mode

IF &STATE = 1 THEN

EXIT_EDIT &SENSOR_TYPE //exit edit mode, save
//sensor type in user memory 1

//&STATE = 0

&TIMER1 = 0 //set timer1 to zero to stop
//going back into edit mode

ENDIF

END

.......... FFrroomm pprreevviioouuss ppaaggee

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-12

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

LLeessssoonn 1166 –– TThhee CCuussttoommeerr IIDD MMaaccrroo
Once you get into the swing of writing macros, you might have hun-
dreds of Texmate meters around (we’re hoping!), running specialised
macros for specific tasks. Occasionally you may want to change or
upgrade a macro to fix a problem or simply improve a process.

The question you will probably be asking yourself at that point is,
‘Which macro version is this meter running?’

The TDS has a simple solution to this called the CUSTOMER_ID_MACRO.
This is just another macro section, similar to the MAIN_MACRO, the
RESET_MACRO and the EDIT_MACRO. Again, the only difference is when
this macro is run (or called) by the meter.

The Tiger Series meter has a built-in model and software version num-
ber display function that is accessed by pressing the PROGRAM, UP and
DOWN buttons at the same time. This causes the display to flash the
model number and software version number of the meter for a few
seconds. Then, it will try to execute the CUSTOMER_ID_MACRO.

Normally, with no macro loaded, the meter displays the model number
and software version number for a few seconds, and then returns to
the normal operating mode. If the meter has a macro loaded that
includes a CUSTOMER_ID_MACRO, it executes this macro before return-
ing to the normal operating display.

Let’s have a look at the first macro we wrote and include a customer
ID macro:

CUSTOMER_ID_MACRO:

WRITE " ___This is version 1.0 of my first " + \
"macro "

END

MAIN_MACRO:

WRITE " ___Hello World " //Scroll Hello
//World across the display

END

?

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-13IInntteerrmmeeddiiaattee LLeessssoonnss

If you run this macro in your meter, it should just scroll the message
" ___Hello World " until you press the PROGRAM, UP, and
DOWN buttons at the same time. It should then flash between the
model and software version number for a few seconds. After that, it
should start scrolling " ___This is version 1.0 of my first
macro " and then return to the normal display.

You could do anything you want in the CUSTOMER_ID_MACRO, but it’s
primary purpose is to identify the currently loaded macro, so normally
it only contains a message that is scrolled across the display.

We suggest that you make it a practice to start each macro you write
by first writing a CUSTOMER_ID_MACRO, at the top of your program. To
simplify things, I haven’t included a CUSTOMER_ID_MACRO in all of these
tutorials, but I recommend that you do when you start writing your
own macros!

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-14

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

LLeessssoonn 1177 –– FFuunnccttiioonn BBuuttttoonn MMaaccrrooss

Some meter applications may require several different parameters to
be changed by the operator from the front panel buttons of the meter.
This could be done by pressing the PROGRAM button each time and
sequencing through the parameters. However, this can be confusing for
the operator.

To solve this problem, Tiger Series meters are available in a variety of
display options, some of which include extra function buttons. Up to
three function buttons are currently available on some models of
meter. These are labeled F1, F2, and F3. Apart from macro use, they
have no other dedicated function in the meter.

Each function button has it’s own macro section, which is called each
time the button is pressed. Let’s take the macro we wrote in Lesson 15
and re-write it so that we use the F1 button to edit the sensor type:

MMaaccrroo ssttaarrttss oonn nneexxtt ppaaggee

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-15IInntteerrmmeeddiiaattee LLeessssoonnss

CUSTOMER_ID_MACRO:

WRITE " ___Macro to select sensor type V1.0 "

END

REG &SENSOR_TYPE = &USER_MEMORY_1

F1_BUTTON_MACRO:

//***

//The F1 button is now the select button to enter
//the edit mode

IF &STATE = 0 THEN

&STATE=1 //used to keep track of
//operational state

EDIT &SENSOR_TYPE //user memory 1 = sensor type

&EDIT_MAX = 4 //maximum value = 4

&EDIT_MIN = 1 //minimum value = 1

&EDIT_DEF = 1 //default value = 1
//(when Up & Down are pressed together)

WRITE "Sensor" //this flashes on the display

ENDIF

END

EDIT_MACRO:

//This macro is run each time the Prog button is
//pressed in edit mode

IF &STATE = 1 THEN

EXIT_EDIT &SENSOR_TYPE // exit edit mode, save
//sensor type in user memory 1

//&STATE = 0

ENDIF

END

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-16

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

This looks very similar to the macro in Lesson 15, except that now we
don’t need a MAIN_MACRO and we don’t need to test if the PROGRAM
button is pressed. I have used the F1_BUTTON_MACRO, which is called
each time the F1 button is pressed. Now we don’t need to use a timer,
as we did in Lesson 15, because we are using different buttons to
enter and exit the edit mode.

Notice that this macro doesn’t have a MAIN_MACRO. In most practical
macros, you would probably still have a MAIN_MACRO to do some calcu-
lations, but this is not mandatory.

Note that the F1 button is only used to enter the editing mode. The
PROGRAM button is still used to save the edited value and return to
the normal operating state. This could be changed if required, but
because this is all done automatically in the EDIT_MACRO, it is the sim-
plest way of doing this.

Although I haven’t used them in this macro, there is also an
F2_BUTTON_MACRO and an F3_BUTTON_MACRO.

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-17IInntteerrmmeeddiiaattee LLeessssoonnss

LLeessssoonn 1188 –– TTeexxtt SSttrriinnggss

In Lesson 1 we looked at the WRITE command, which allows a message
(or text string) of up to 100 characters long to be scrolled across the
display. When a WRITE command is executed, the message, enclosed in
the quotation marks, is copied into a special section of memory, called
the string buffer. Each time the WRITE command is executed, the new
message is written into the string buffer, starting from the beginning
of the buffer. Any previous messages are overwritten and lost and the
new message starts scrolling from the beginning of the message.

Sometimes it is necessary for different parts of a message to change,
depending on certain conditions. For short messages we could just
write each message over again, with changes to part of the message,
as we did in Lesson 4. For long messages, this is not very efficient and
would use up large amounts of memory for each message.

The TDS includes an APPEND command that allows you to add more
text onto the end of an existing message string. Here is an example of
how it is used. I have taken the macro from Lesson 17 and added a
MAIN_MACRO to display the currently selected sensor type:

We have looked at most of this macro before in Lesson 17, so let’s
just concentrate on the MAIN_MACRO section. The first WRITE com-
mand of the MAIN_MACRO writes the text " ___Currently
selected sensor type is - Sensor " into the beginning of the
string buffer. This text remains the same for all of the messages we

MMaaccrroo ssttaarrttss oonn nneexxtt ppaaggee

On multiple display meters of the Tiger 320 series text messages can
only appear on the default display (top display on the DI-503, bottom
display on the DI-602 and DI-802). On dual display meters of the Tiger
380 series (DI-602 and DI-802) messages can be written to both dis-
plays. This will be discussed in Lesson 41.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-18

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

CUSTOMER_ID_MACRO:

WRITE " ___Macro to select sensor type V1.0 "

END

REG &SENSOR_TYPE = &USER_MEMORY_1

MAIN_MACRO:

//***

//This is the main macro

IF &STATE = 0 THEN

WRITE " ___Currently selected sensor type " + \
"is - Sensor "

IF &SENSOR_TYPE = 1 THEN

APPEND "1 (Butane)"

ELSIF &SENSOR_TYPE = 2 THEN

APPEND "2 (Oxygen)"

ELSIF &SENSOR_TYPE = 3 THEN

APPEND "3 (Hydrogen)"

ELSE

APPEND "4 (Nitrogen)"

ENDIF

APPEND ". Press F1 to select new sensor " + \
"type. "

ENDIF

END

F1_BUTTON_MACRO:

//***

//The F1 button is now the select button to enter
//the edit mode

MMaaccrroo ccoonnttiinnuueedd oonn nneexxtt ppaaggee

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-19IInntteerrmmeeddiiaattee LLeessssoonnss

IF &STATE = 0 THEN

&STATE=1 //used to keep track of
//operational state

EDIT &SENSOR_TYPE //user memory 1 = sensor type

&EDIT_MAX = 4 //maximum value = 4

&EDIT_MIN = 1 //minimum value = 1

&EDIT_DEF = 1 //default value = 1
//(when Up & Down are pressed together)

WRITE ""

WRITE "Sensor" //this flashes on the display

ENDIF

END

EDIT_MACRO:

//This macro is run each time the Prog button is
//pressed in edit mode

IF &STATE = 1 THEN

EXIT_EDIT &SENSOR_TYPE //exit edit mode, save
//sensor type in user memory 1

//&STATE = 0

ENDIF

END

want to display, so it can all be put in the WRITE command string.
However, different text is required next, depending on the value of
&SENSOR_TYPE. For each different value of &SENSOR_TYPE, a different
text string is added onto the end of the initial string with the APPEND
command. Finally, after the sensor type has been added to the string,
the APPEND command is used again to add more common text onto
the end of the message.

So, if &SENSOR_TYPE equals 1, then the following message would be
displayed.
" ___Currently selected sensor type is - Sensor 1

(Butane). Press F1 to select new sensor type. "

.......... FFrroomm pprreevviioouuss ppaaggee

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-20

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

You can append a message as many times as you like, provided that the
total length of the entire message does not exceed 100 characters.

You may be asking yourself "If the new message starts from the begin-
ning each time the WRITE command is executed, and the MAIN_MACRO
is run 10 times a second, then how can this macro possibly have
enough time to display the whole message?" Good question!

To avoid overwriting a previous message, the macro engine first checks
that the existing message has finished scrolling before it writes a new
one. If a message is still in progress when a WRITE command is execut-
ed, the macro simply stops execution at that point, exits the macro,
and hands control back to the operating system of the meter. Any
commands past that point are ignored.

This can be a problem in some cases, and careful thought should be
given to where you place WRITE commands. You need to make sure
that, if a WRITE command cannot be executed (because a previous
message is still scrolling), the same section of code will be entered
next time the macro is called.

Sometimes you might want to interrupt a message that is still scrolling,
and display a new message. Maybe the new message is an urgent
warning or maybe it is a response to a button being pressed. This is
exactly what I have done in the F1_BUTTON_MACRO. To ensure that
"Sensor" is displayed instantaneously when the F1 button is pressed, I
have included an extra WRITE “” instruction before the WRITE
“Sensor” instruction.

Placing the instruction WRITE “”, with an empty string (i.e. “”) before
the message you want to display, stops any current messages and
clears the string buffer. The next WRITE is executed straight away
because the string buffer is now empty.

?

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-21IInntteerrmmeeddiiaattee LLeessssoonnss

LLeessssoonn 1199 –– TTeexxtt SSttrriinngg AArrrraayyss

In the previous lesson, we used the APPEND command to display differ-
ent text for different sensor types. This works fine if we only have 4
sensor types, but what if we had 100 different sensor types. It would
be a very long IF THEN command!

The TDS allows you to use something called a tteexxtt ssttrriinngg aarrrraayy,
which is really just a group of individual messages, one after the other.
Let’s look at a simple macro that just displays the currently selected
sensor type:

DIM A[] = [" ","1 (Butane)","2 (Oxygen)",\

"3 (Hydrogen)","4 (Nitrogen)"]

REG &SENSOR_TYPE = &USER_MEMORY_1

MAIN_MACRO:

IF &STATE = 0 THEN

WRITE " ___Currently selected sensor type " + \
"is - Sensor "

APPEND A[&SENSOR_TYPE]

APPEND ". Press F1 to select new sensor " + \
"type. "

ENDIF

END

MMaaccrroo ccoonnttiinnuueedd oonn nneexxtt ppaaggee

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-22

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

Functionally, this macro would do the same thing as the MAIN_MACRO in
Lesson 18, but it looks quite different. In the first line you will notice
the command DIM A[] = , followed by square brackets and then
some text strings, separated by commas. The DIM A[] = command
is used to dimension the array. Or, in other words, to tell the compiler
how many individual strings there are in the array, and what is in each
string.

The A[] tells the compiler that the following group of strings belongs
to the text string array called A. It’s possible to have several different
text string arrays in one program. You might, for example, have anoth-
er array defined as DIM B[] = and yet another as DIM C[] =.

F1_BUTTON_MACRO:

IF &STATE = 0 THEN

&STATE=1 //used to keep track of
//operational state

EDIT &SENSOR_TYPE //user memory 1 = sensor type

&EDIT_MAX = 4 //maximum value = 4

&EDIT_MIN = 1 //minimum value = 1

&EDIT_DEF = 1 //default value = 1
//(when Up & Down are pressed together)

WRITE ""

WRITE "Sensor" //this flashes on the display

ENDIF

END

EDIT_MACRO:

//This macro is run each time the Prog button is
//pressed in edit mode

IF &STATE = 1 THEN

EXIT_EDIT &SENSOR_TYPE //exit edit mode, save
//sensor type in user memory 1

//&STATE = 0

ENDIF

END

Dimension the Array

.......... FFrroomm pprreevviioouuss ppaaggee

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-23IInntteerrmmeeddiiaattee LLeessssoonnss

WRITE a[1] //get string #2 from string array a

WRITE ABC[&CH3] //get string pointed to by CH3 from
//string array ABC

WRITE MSG[#MY_VARIABLE]// get string pointed to by
//MY_VARIABLE from string
//array MSG

APPEND a[1] //concatenate string #2 from string
//array a

APPEND ABC[&CH3] //concatenate string pointed to by
//CH3 from string array ABC

APPEND MSG[#MY_VARIABLE] //concatenate string pointed
//to by MY_VARIABLE

//from string array MSG

In the main macro, you will notice the line APPEND A[&SENSOR_TYPE].
As we discussed in Lesson 18, the APPEND command just adds a text
string on to the end of an existing string. The difference here is that
the actual string is not specified directly after the command. Instead,
A[&SENSOR_TYPE] acts as a pointer to the text string that we want.
The A tells the compiler that the string we want is part of the text
string array A.

The part inside the square brackets points to the individual string num-
ber in the array. If, for example, I wrote APPEND A[4] it would use the
last string in array A, which is "4 (Nitrogen)". In the previous macro I
have put register &SENSOR_TYPE inside the square brackets instead of
a number, but the effect is the same. The macro engine now gets the
number stored in &SENSOR_TYPE and uses this as the pointer to the
string in array A.

Hold on a minute! There are actually five strings in array A. The first
one is a string with only a space in it (i.e. “”). That’s because in the
TDS strings in an array are always numbered from zero. So if I write
APPEND A[4], it actually points to the fifth string in the array, because
APPEND A[0] points to the first string. I could have written the macro
so that &SENSOR_TYPE ranges from 0 to 3 instead of 1 to 4, but it’s
just as easy to insert a small string that doesn’t do anything.

Text string arrays can be used with the WRITE command and the
APPEND command. All of the following examples are valid uses of text
string arrays.

?

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-24

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

Remember that each string in the array can be up to 100 characters
long, provided that, in the case of the APPEND command, the total
message length does not exceed 100 characters.

An array can have any number of strings in it, but it will be limited by
the amount of macro memory available.

If you are using a register or a variable, to point to a string in an array,
you must make sure that you limit the range of the variable to match
the size of the array! Neither the compiler nor the macro engine is
capable of doing this for you! If a register or variable points to a string
outside of the array, it will start loading the string buffer with whatever
it finds at that destination. The result could be something along the
lines of:

"!(h-#,;;.dyg$32&89h%()&3@+k(8b^%43fI9*~"

or something equally as meaningless!

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-25IInntteerrmmeeddiiaattee LLeessssoonnss

LLeessssoonn 2200 –– EEddiitt SSttrriinngg AArrrraayyss
Now that you know how to use string arrays with the WRITE and the
APPEND command, we’ll look at a slightly different use of string arrays
in the edit mode.

Back in Lesson 13, we looked at the edit mode and wrote a macro to
allow you to select a sensor type, from 1 to 4, via the front panel but-
tons. In the edit mode, the display flashed between SSeennssoorr and a
number from 11 to 44. This works well provided you know what sensor
#1 is. It would be more helpful if the numbers could be replaced by
text, so that you can see exactly what you are selecting.

TDS to the rescue again! The command EDIT_TEXT is used in the TDS
to do exactly this. Take a look at the following macro. This macro is
used to select thermocouple types for temperature measurement:

DIM A[] = ["J type","K type","R type","S type",\

"T type","B type","N type"]

RESET_MACRO:

#SENSOR_TYPE=0

END

F1_BUTTON_MACRO:

//Called by the operating system when the F1 button
//is pressed

IF &STATE = 0 THEN

EDIT #SENSOR_TYPE

&EDIT_MAX=6

&EDIT_MIN=0

&EDIT_DEF=0

WRITE ""

WRITE "Sensor"

EDIT_TEXT A[] //this line selects DIM A[] as the
//string array

&STATE=1

ENDIF

END

MMaaccrroo ccoonnttiinnuueedd oonn nneexxtt ppaaggee

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-26

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

EDIT_MACRO:

//Called by the operating system when Prog button is
//pressed in edit mode

IF &STATE = 1 THEN

EXIT_EDIT #SENSOR_TYPE

//&STATE = 0

ENDIF

END

In the first line we have defined a string array called A that has seven
strings in it. Near the end of the F1_BUTTON_MACRO you will find a line
that reads EDIT_TEXT A[]. This looks very similar to the string array
commands used in the previous lesson, except that there is no number
or register specified in between the square brackets! That’s because
the EDIT_TEXT command always uses the edit value to point to the
string.

If the edit value equals zero, the display flashes between SSeennssoorr and JJ
ttyyppee. As the UP or DOWN buttons are pressed to change the sensor
type, the text changes from JJ ttyyppee to KK ttyyppee and so on.

The EDIT_TEXT command can only be used in the edit mode. Each
time the edit mode is entered, by using the command EDIT, the edit
value is displayed as numerals by default. If the EDIT_TEXT command
is then issued, strings are displayed instead of numerals. So you must
make sure that you are already in the edit mode before you use the
EDIT_TEXT command (see Lesson 13).

If, for some reason, you want to stop displaying text and display the
edit value in numerals again, you can do so by using the command
EDIT_NUMERIC to return to the default condition.

.......... FFrroomm pprreevviioouuss ppaaggee

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-27IInntteerrmmeeddiiaattee LLeessssoonnss

LLeessssoonn 2211 –– TThhee SSEELLEECCTT CCAASSEE SSttaatteemmeenntt

All of the macros we have looked at so far have used the IF THEN or
ELSIF command to conditionally test registers and variables. Another
useful command is the SELECT CASE statement. It is particularly use-
ful, and more efficient, for programs that test the same register or
variable for many different values. Let’s have a look at how it is used.

REG &SENSOR_TYPE = &USER_MEMORY_1

REG &SENSOR_GAIN = &USER_MEMORY_2

REG &SENSOR_MODE = &USER_MEMORY_3

REG &SENSOR_CAL = &USER_MEMORY_4

F1_BUTTON_MACRO:

IF &STATE = 0 THEN

&STATE=1 //used to keep track of
//operational state

EDIT &SENSOR_TYPE //user memory 1 = sensor type

&EDIT_MAX = 4 //maximum value = 4

&EDIT_MIN = 1 //minimum value = 1

&EDIT_DEF = 1 //default value = 1 (Up & Down
//pressed together)

WRITE "Sensor" //this flashes on the display

ENDIF

END

EDIT_MACRO:

//This macro is run each time the Prog button is
//pressed in edit mode

SELECT &STATE //test &STATE

CASE 1: //if STATE = 1 then

EXIT_EDIT &SENSOR_TYPE //exit edit mode, save
//sensor type in user memory 1

EDIT &SENSOR_GAIN //user memory 2 = sensor gain

MMaaccrroo ccoonnttiinnuueedd oonn nneexxtt ppaaggee

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-28

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

&EDIT_MAX = 100 //maximum value = 100

&EDIT_MIN = 0 //minimum value = 0

&EDIT_DEF = 0 //default value = 0

//(Up & Down pressed together)

&STATE = 2

WRITE " Gain" //this flashes on the display

CASE 2: //if STATE = 2 then

EXIT_EDIT &SENSOR_GAIN //exit edit mode, save
//sensor gain in user memory 2

EDIT &SENSOR_MODE //user memory 3 = sensor mode

&EDIT_MAX = 10 //maximum value = 10

&EDIT_MIN = 0 //minimum value = 0

&EDIT_DEF = 0 //default value = 0
//(Up & Down pressed together)

&STATE = 3

WRITE " Mode" //this flashes on the display

CASE 3: //if STATE = 3 then

EXIT_EDIT &SENSOR_MODE //exit edit mode, save
//sensor mode in user memory 3

EDIT &SENSOR_CAL //user memory 4 = sensor
//calibration

&EDIT_MAX = 255 //maximum value = 255

&EDIT_MIN = 0 //minimum value = 0

&EDIT_DEF = 0 //default value = 0
//(Up & Down pressed together)

&STATE = 4

WRITE " Cal" //this flashes on the display

CASE 4: //if STATE = 4 then

EXIT_EDIT &SENSOR_CAL //exit edit mode, save
//sensor cal in user memory 4

// &STATE = 0

DEFAULT:

&STATE = 0

ENDSEL

END

.......... FFrroomm pprreevviioouuss ppaaggee

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-29IInntteerrmmeeddiiaattee LLeessssoonnss

This may look a bit daunting but it’s actually quite simple. Let’s just
look at the EDIT_MACRO, as this is where SELECT and CASE statements
are used.

The very first line of the EDIT_MACRO has the command SELECT
&STATE. This means that we are going to test the pre-defined register
&STATE for each of the different cases shown between the SELECT and
ENDSEL instructions. The ENDSEL instruction specifies where the
SELECT command finishes in much the same way as the ENDIF instruc-
tion sets the end of an IF THEN ELSIF group of tests.

The next line reads CASE 1:, which means that the macro tests
&STATE to see if it equals 1. If &STATE equals 1, all of the commands
under CASE 1: are executed, until the next CASE, DEFAULT, or ENDSEL
instruction is encountered. It then starts executing the next line of
code after the ENDSEL instruction.

If &STATE is not equal to 1, it drops down to the next CASE instruction,
which is CASE 2:. This means the macro tests &STATE to see if it
equals 2 and so on.

Each CASE statement is tested until one of them is found to be true. If
none of the CASE statements are true, the DEFAULT case can be used
to execute some task for all other values of &STATE that have not
been tested in the case statements above.

The DEFAULT case is optional, but if it is used, it must be used last,
after all the other CASE statements. If all of the cases tested are false,
and the DEFAULT case is not used, then the next instruction after the
ENDSEL command is executed.

In some programs you might want to execute the same commands for
several different cases. You can do this with one CASE statement as
follows:

MMaaccrroo ssttaarrttss oonn nneexxtt ppaaggee

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-30

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

SELECT &STATE //test &STATE

CASE 1, 5, 6, 10: //if STATE = 1,5,6 or 10 then

WRITE " Gain" //this flashes Gain on the
//display

CASE 2: //if STATE = 2 then

WRITE " Mode" //this flashes Mode on the
//display

CASE 3: //if STATE = 3 then

WRITE " Cal" //this flashes Cal on the display

DEFAULT:

&STATE = 0

ENDSEL

In Lesson 11, we looked at the use of constant names instead of num-
bers. It is often helpful to replace case numbers in select case statements
with more meaningful names. For example, we could write the following:

CONST OPERATE = 0

CONST EDIT_GAIN = 1

CONST EDIT_MODE = 2

CONST EDIT_CAL = 3

SELECT &STATE

CASE EDIT_GAIN

WRITE " Gain"

CASE EDIT_MODE

WRITE " Mode"

CASE EDIT_CAL

WRITE " Cal"

DEFAULT:

&STATE = OPERATE

ENDSEL

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-31IInntteerrmmeeddiiaattee LLeessssoonnss

LLeessssoonn 2222 -- TThhee GGOOSSUUBB CCoommmmaanndd

Often you will find that the same block of instructions need to be exe-
cuted several times over, from different parts of your program. You
could copy these blocks into your code in the appropriate places, but
this is not very efficient. It also means if you need to change some-
thing in the block, you will need to change it everywhere you have
copied it as well.

The TDS has a command called GOSUB that allows you to write the
block once, and then call it from anywhere in the program as many
times as you want. This block of code is normally referred to as a sub-
routine, hence the name GOSUB (i.e. GO – to – SUBroutine). The follow-
ing example shows how it works:

RESET_MACRO:

#TEMP = 0

END

MAIN_MACRO:

//***

// MAIN MACRO

#TEMP = &CH1

GOSUB CHECK_RANGE

&CH1 = #TEMP

#TEMP = &CH2

GOSUB CHECK_RANGE

&CH2 = #TEMP

#TEMP = &CH3

GOSUB CHECK_RANGE

&CH3 = #TEMP

Line 9

MMaaccrroo ccoonnttiinnuueedd oonn nneexxtt ppaaggee

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-32

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

#TEMP = &CH4

GOSUB CHECK_RANGE

&CH4 = #TEMP

END

//***

// Subroutine to check range

CHECK_RANGE:

IF #TEMP > 10000 THEN

#TEMP = 10000

ELSIF #TEMP < 0 THEN

#TEMP = 0

ENDIF

RETURN

If you look at the bottom of the macro, you will find the subroutine
and a line that reads CHECK_RANGE:. The : after the label
CHECK_RANGE tells the compiler that this is an address label. The com-
piler now knows that any reference to CHECK_RANGE means that it has
to go to this point in your program.

The next five lines (lines 30 to 34) form a simple test to check the range
of a variable called #TEMP and limit its range. The last line of the subrou-
tine contains the command RETURN. This signals the end of the subroutine
and tells the macro to jump back to the point at which the subroutine
was called and start executing the next instruction from there.

In the second line of the MAIN_MACRO (line 9) you will see the com-
mand GOSUB CHECK_RANGE. This causes the macro to jump, from
where it is, to the point in the program where the label CHECK_RANGE is
placed, and then start executing the next instruction from there.
Before the macro jumps to CHECK_RANGE, it first saves the place were
it is so that it knows where to come back to when it executes the
RETURN instruction.

Line 30

Line 31

Line 32

Line 33

Line 34

.......... FFrroomm pprreevviioouuss ppaaggee

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-33IInntteerrmmeeddiiaattee LLeessssoonnss

A subroutine can be called as many times as you like in your program.
You can also have as many subroutines as you like in one program. You
can even call one subroutine from inside another subroutine. In the TDS
this is called a nested subroutine. The only restriction is that you can-
not use nested subroutines of more than 4 levels deep, but in practice
this is seldom a problem.

You should never place a subroutine inside another macro section.
Subroutines can be placed at the beginning or end of your program, or
in between other macro sections. The important thing to remember is
that every subroutine must have a RETURN command at the end.

Nested Subroutines

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-34

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

LLeessssoonn 2233 –– TThhee RREEPPEEAATT UUNNTTIILL LLoooopp
Sometimes it is necessary to repeat a block of instructions a number of
times, but the number of repeats is not constant. To do this, the TDS
includes the REPEAT UNTIL loop, which repeats a block of instructions
until a certain condition is true.

To show this in an example, lets assume we need to calculate the
result of channel 1 to the power of channel 2. (In Lesson 12 you will
find that there is a special instruction that does X^Y, but here I will do
it the long way).

MAIN_MACRO:

#TEMP = &CH2

&RESULT = &CH1

REPEAT

IF &RESULT > 10000 THEN

WRITE " ___Over Range "

#TEMP = 1

ELSE

&RESULT = &RESULT * &CH1

#TEMP = #TEMP – 1

ENDIF

UNTIL #TEMP <= 1

END

In line 2, a variable called #TEMP is loaded with the value of &CH2. In
line 3, the register &RESULT is loaded with the value of &CH1. The next
line contains the instruction REPEAT. This just tells the compiler where
to start repeating instructions from. The next few lines test the value
of &RESULT and display an overrange warning if it is too large to be
multiplied by &CH1.

If the value of &RESULT is inside the acceptable range, &RESULT is mul-
tiplied by &CH1, and the variable #TEMP is decremented by 1 count. A
few lines further down is the instruction UNTIL #TEMP <= 1. The
UNTIL instruction tells the compiler that it needs to test the following
condition and jump back to the REPEAT instruction if it is false.

Line 2

Line 3

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-35IInntteerrmmeeddiiaattee LLeessssoonnss

In this case, the macro checks the value of #TEMP and jumps back to
the REPEAT instruction if it is greater than 1. If it is less than or equal
to 1, it exits the REPEAT UNTIL loop and starts executing the next line
after the UNTIL instruction.

Notice that each time the value of &RESULT is multiplied by &CH1, the
value of #TEMP is decremented, so the value of #TEMP always starts to
decrease towards 1. If the value of &RESULT is too large, then #TEMP is
also set to 1. This means our program always exits the loop, regardless
of the starting values of &CH1 and &CH2.

This is a very important point to note about REPEAT UNTIL loops. You
must be careful not to allow the program to get into an endless loop,
or a loop that is too long. If you do, the overall performance of the
meter becomes slow and erratic. It may even appear to freeze or lock
up if your macro enters an endless loop.

Another point to note with REPEAT UNTIL loops is that the loop is
always executed at least once, because the UNTIL condition is only
executed at the end of the loop. In the next lesson we will look at the
FOR NEXT loop which checks the conditions at the beginning of the
loop.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-36

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

LLeessssoonn 2244 –– TThhee FFOORR NNEEXXTT LLoooopp
Another variation on the REPEAT UNTIL loop is the FOR NEXT loop. Once
again it is used to repeat a block of instructions a number of times, but
there are some subtle differences. Let’s have a look at an example:

MAIN_MACRO:

&RESULT = &CH1

FOR #TEMP = &CH2 TO 1 STEP -1

IF &RESULT > 10000 THEN

WRITE " ___Over Range "

#TEMP = 1

ELSE

&RESULT = &RESULT * &CH1

ENDIF

NEXT #TEMP

END

The first difference you will notice, is that we don’t need to use a sep-
arate line to load the variable #TEMP with &CH2, as we did in Lesson 20.
This is done for us automatically in the instruction on line 3 FOR #TEMP

= &CH2 TO 1 STEP –1. The FOR #TEMP = &CH2 tells the compiler to
initially load #TEMP with a starting value of &CH2.

The next part of the instruction is TO 1 STEP –1. This tells the com-
piler that each time the macro goes through the loop, it needs to sub-
tract 1 (STEP –1) from #TEMP until it equals 1 (TO 1). Because I want
#TEMP to decrease in value, I wrote STEP –1. I would write STEP 22 if I
wanted the value to increase by 22 each time it went through the
loop. The STEP instruction is optional and you can omit it if you like. If
you leave it off, the compiler will default to STEP 1.

Near the end of the macro you will see the instruction NEXT #TEMP. The
commands between the FOR instruction and the NEXT instruction are
executed as normal. Then, when the instruction NEXT #TEMP is execut-
ed, the value of #TEMP is decremented and, if it is not equal to 1, the
macro jumps back up to the next line after the FOR instruction.

Line 3

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-37IInntteerrmmeeddiiaattee LLeessssoonnss

MAIN_MACRO:

FOR #TEMP = 0 TO 10

&CH1 = &CH1 * &CH2

NEXT #TEMP

END

Other applications might require a much more complex FOR NEXT loop.
The TDS allows you to use expressions in a FOR instruction, provided
they are on the right-hand side of the = operator. Here is an example:

MAIN_MACRO:

FOR #TEMP = &CH1-&CH2 TO &CH1+&CH2 STEP &CH3*&CH4/&CH3

&CH1 = &CH1 * &CH2

NEXT #TEMP

END

This looks a bit complicated, but the operation is exactly the same.
Initially, #TEMP is loaded with (&CH1-&CH2). Each time through the
loop, #TEMP is changed by a value of (&CH3x&CH4/&CH3), until it
equals (&CH1+&CH2).

If you’re using a FOR NEXT loop like this, you really need to check that
it won’t end up in an endless loop! You need to take into account all
possible values of input data.

In some cases you might have a very simple FOR NEXT loop, like the
following macro, where you just want to go through the loop ten times.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-38

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

LLeessssoonn 2255 –– EExxpprreessssiioonnss iinn IIFF EELLSSIIFF CCoommmmaannddss
Normally IF and ELSIF tests compare a register or a variable with a
constant. However, you can use simple expressions in an IF or ELSIF
command, as shown in the following macro:

MAIN_MACRO:

IF &DISPLAY >= (&CH2 + 1050) THEN //if meter display
//is >= Channel2+1050 then

WRITE " ___Warning – tank is about to over flow! "

ELSIF &DISPLAY >= (&CH2 + &CH3) THEN

WRITE " ___Tank is Full "

ELSE

WRITE " ___Tank is still filling "

ENDIF

END

In line 2, the value of &DISPLAY is compared to the value of (&CH2 +
1050). This means that the numeric value of &CH2+1050 is computed
first, and then it is compared to the value of &DISPLAY. The content of
&CH2 is not changed in any way.

In the ELSIF instruction, the value of &DISPLAY is compared to the
value of (&CH2 + &CH3). This means that the numeric value of
&CH2+&CH3 is computed first, and then it is compared to the value of
&DISPLAY. Again, the contents of &CH2 and &CH3 are not changed.

Line 2

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-39IInntteerrmmeeddiiaattee LLeessssoonnss

LLeessssoonn 2266 –– NNuummbbeerr AArrrraayyss aanndd RReeggiisstteerr AArrrraayyss
In Lessons 19 and 20 we looked at string arrays where the array was
made up of many individual strings, one after the other. For some
macros, it is necessary to use an array of numbers instead of text
strings. This is particularly useful when using data tables in your macro.

The following macro shows how to use number arrays in the TDS. It is
similar to the macro we used in Lesson 17 to select the sensor type
from 1 to 4. But, now there are 10 different sensors, and each sensor
type has a preset scaling factor. We will use a number array to store
the different scaling factors for sensors 0 to 9. Let’s see how it looks:

DIM A[] = [1200,461,7891,2141,11500,17300,2000,55,800,12345]

REG &SENSOR_TYPE = &USER_MEMORY_1

F1_BUTTON_MACRO:

//***

//The F1 button is now the select button to enter
//the edit mode

IF &STATE = 0 THEN

&STATE=1 //used to keep track of
//operational state

EDIT &SENSOR_TYPE //user memory 1 = sensor type

&EDIT_MAX = 9 //maximum value = 9

&EDIT_MIN = 0 //minimum value = 0

&EDIT_DEF = 0 //default value = 0
//(Up & Down pressed together)

WRITE "Sensor" //this flashes on the display

ENDIF

END

MMaaccrroo ccoonnttiinnuueedd oonn nneexxtt ppaaggee

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-40

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

EDIT_MACRO:

//This macro is run each time the Prog button is
//pressed in edit mode

IF &STATE = 1 THEN

EXIT_EDIT &SENSOR_TYPE //exit edit mode, save
//sensor type in user memory 1

//&STATE = 0

#SCALE_FACTOR = A[&SENSOR_TYPE]

ENDIF

END

In the first line I have defined the number array using the DIM A[] =

command, in a similar way as we did with text strings in Lessons 19
and 20. The only difference here is that there are numbers, separated
by commas, inside the array. Because we want to store a number only
in the array, we do nnoott put quotation marks around. If we did, the
compiler would treat it as a text string array instead of a number array.

You cannot mix numbers and text strings inside the same array. You
must create separate arrays for numbers and text strings. The num-
bers in a number array can only be unsigned 16-bit fixed point num-
bers. This means they must be a number between 0 and +65,535 and
they cannot contain fractions.

The last line of the EDIT_MACRO (line 28) reads #SCALE_FACTOR =
A[&SENSOR_TYPE]. This operates in exactly the same manner as a text
string array with the WRITE or APPEND command. The user defined reg-
ister &SENSOR_TYPE points a number in array A. This number is then
stored in the variable #SCALE_FACTOR.

Number arrays are useful when using large data tables in your macro.
Maybe you need to have a lookup table to scale an input to a pre-
defined response curve that never changes. Number arrays are fine for
this because you can enter the data points into your macro and down-
load the table with the macro, all in one step.

Line 28

.......... FFrroomm pprreevviioouuss ppaaggee

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-41IInntteerrmmeeddiiaattee LLeessssoonnss

But what happens if you need to change some points later on? You will
have to edit your macro, re-compile it and reprogram the meter again
with the modified macro. That might be okay once or twice, but what
if you need to change these values often? That’s why the TDS includes
register arrays!

The following macro shows how to use register arrays in the TDS. It is
similar to the previous macro, but now there are 100 different sensors,
and for each sensor type selected, we need to enter a scaling factor
into the meter as well. In this macro, the 100 scale factors are stored
in user memories 1 to 100 instead of in a number array in the macro.
This means that the values of these scaling factors can be changed
without needing to reprogram the macro. Here’s how it looks.

REG &SCALE_TABLE = &USER_MEMORY_1

REG &SENSOR_TYPE = &USER_MEMORY_101

F1_BUTTON_MACRO:

//***

//The F1 button is now the select button to enter
//the edit mode

IF &STATE = 0 THEN

&STATE=1 //used to keep track of
//operational state

EDIT &SENSOR_TYPE //user memory 101=sensor type

&EDIT_MAX = 99 //maximum value = 99

&EDIT_MIN = 0 //minimum value = 0

&EDIT_DEF = 0 //default value = 0
//(Up & Down pressed together)

WRITE "Sensor" //this flashes on the display

ENDIF

END

?

MMaaccrroo ccoonnttiinnuueedd oonn nneexxtt ppaaggee

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-42

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

EDIT_MACRO:

//This macro is run each time the Prog button is
//pressed in edit mode

IF &STATE = 1 THEN

EXIT_EDIT &SENSOR_TYPE //exit edit mode, save
//sensor type in user memory 1

EDIT &SCALE_TABLE[&SENSOR_TYPE]

&STATE = 2

&EDIT_MAX = 10000 //maximum value = 10000

&EDIT_MIN = 0 //minimum value = 0

&EDIT_DEF = 1000 //default value = 1000
//(Up & Down pressed together)

WRITE " SCALE" //this flashes on the display

ELSIF &STATE = 2 THEN

EXIT_EDIT &SCALE_TABLE[&SENSOR_TYPE]

//&STATE = 0

ENDIF

END

The EDIT_MACRO now has two states. State 1 is used to select the
sensor type from 0 to 99. State 2 is used to enter a scaling factor for
the currently selected sensor. In line 26 you will see the command
EDIT &SCALE_TABLE[&SENSOR_TYPE]. We have discussed the EDIT
command in Lesson 13, but this is a little different. Instead of specify-
ing a pre-defined register or variable for the EDIT command, I have
used the register array &SCALE_TABLE[&SENSOR_TYPE]. The operation
of this is similar to the number array above. The register
&SENSOR_TYPE is used to point to the particular register in the array
starting at &SCALE_TABLE. So if &SENSOR_TYPE equals 0, then the edit
buffer is loaded with the first register of the array, which is
&SCALE_TABLE[0], (or &USER_MEMORY_1).

If &SENSOR_TYPE equals 49, then the edit buffer is loaded with the
fiftieth register of the array which is &SCALE_TABLE[49], (or
&USER_MEMORY_50).

Line 26

Line 35

.......... FFrroomm pprreevviioouuss ppaaggee

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-43IInntteerrmmeeddiiaattee LLeessssoonnss

In line 35 the same register array has been used with the EXIT_EDIT
command. This stores the edited value into the register array starting
at &SCALE_TABLE. The register &SENSOR_TYPE is used to point to the
particular register in the array.

Here are some other uses of register arrays.

&CH1 = &TABLE2_INPUT1[20]

#VALUE_A = &TABLE1_INPUT1[#INPUT_POINT] + &CH1

&SCALE_TABLE[&SENSOR_TYPE]= 1000

&SCALE_TABLE[10] = 1000

As you can see above, the pointer to the register in the array can be a
pre-defined register, a variable, or a constant (i.e. a number).

Again, care must be taken to ensure that the pointer does not point to
a register outside of the array. If it does, you will be reading or writing
to registers outside the array that could produce very strange results.
The compiler does not check for this so you will have to check this
yourself. In some cases you may need to include extra tests to limit
the value of the pointer.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-44

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

LLeessssoonn 2277 –– RReeddeeffiinniinngg RReeggiisstteerrss aass BBiitt AArrrraayyss
Sometimes you may only be interested in a single bit of a pre-defined
register that is not pre-defined as a bit register itself. This can be
achieved by redefining the register as a bit array using the BITREG
command:

BITREG &CODE3 = [|DONT_CARE, |MASTER_MODE,
|DONT_CARE2]

F1_BUTTON_MACRO:

|MASTER_MODE = ON

PRINT "RESULT = " + &RESULT + CHR(CR) + CHR(LF)

|MASTER_MODE = OFF

END

Just like the BIT, REG, and DIM command BITREG is used outside any
macro. Of course the register has to be defined prior to its redefinition.
You can only define as many bit variables as there are bits available to
the register. In the example &CODE3 is an 8-bit value, so up to 8 bit
variables would be possible.

Please note that you don't have to redefine all available registers. The
first bit variable will refer to Bit 0, the second to Bit 1 and so on. The
bit variable names have the same restrictions as other user defined bit
variables.

If you take a look at the programming code sheet (NZ101) you may
notice that the serial mode is actually defined by the three lower bits
of &CODE3. So if |DONT_CARE = ON the macro would actually change
between MMooddbbuuss mode and PPrriinntt mode. So, it would be wise to make
sure that bit 0 and 2 are not set:

RESET_MACRO:

|DONT_CARE = off

|DONT_CARE2 = off

END

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-45IInntteerrmmeeddiiaattee LLeessssoonnss

Somtimes you really don't care what the other bits are set to if you
change it. In this case you can simply omit to name those bits:

BITREG &CODE2 = [,,,,,,, |FAST_MODE] // only bit 7

Here the first seven bits (bit 0 to bit 6) stay nameless and only the
seven commas remain, only bit 7 is defined as |FAST_MODE.

This omission of array fields is only available for BITREG definitions.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-46

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

In some applications you may need to change which input channel is
displayed on the front of the meter or which data source is being used
by the analogue output, setpoints, or totalisators . To achieve this you
have to set the corresponding data source register to the appropriate
register number. But how do you know the register number for CH1?

Of course you could look it up in the Register Supplement (NZ209) but
there is a much easier way. You can use the ADDR command! Look at
the macro below.

MAIN_MACRO:

#My_Result = -1

IF |CAPTURE_PIN = ON THEN

&DATA_SOURCE_DISPLAY1 = ADDR(&CH1)

ELSE

&DATA_SOURCE_DISPLAY1 = ADDR(#My_Result)

ENDIF

END

LLeessssoonn 2288 –– DDaattaa SSoouurrccee RReeggiisstteerrss

The ADDR command simply looks up the register address of its argu-
ment for you. You like that?

In line 6, the ADDR command is used with a user defined variable. The
actual register associated with a user defined variable is only available
at compile time. Using ADDR is the only reliable way to determine the
register number of a user defined register!

As the data source registers are the only registers that the ADDR com-
mand applies to, it’s possible that you may overlook the addition of the
ADDR command. If you do, the TDS will assume that you have, and will
compile this shorter form as though the ADDR command is still there.
For example, look at this next macro.

Line 6

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-47IInntteerrmmeeddiiaattee LLeessssoonnss

This will compile without an error – but the compiler will issue a warn-
ing. The end result will be functionally the same as the macro above. In
line 6 the short form still looks up the register address of #My_Result
and not its value!

If you use the short form, there are some potential traps that you
need to be aware of. For example, look at this next macro.

MAIN_MACRO:

#My_Result = -1

IF |CAPTURE_PIN = ON THEN

&DATA_SOURCE_DISPLAY1 = &CH1

ELSE

&DATA_SOURCE_DISPLAY1 = #My_Result // Caution

ENDIF

END

MAIN_MACRO:

#My_Result = -1

IF |CAPTURE_PIN = ON THEN

&DATA_SOURCE_DISPLAY1 = &CH1

ELSE

&DATA_SOURCE_DISPLAY1 = #My_Result + 1 // Caution

ENDIF

&DATA_SOURCE_TOTAL1 = &DATA_SOURCE_DISPLAY1

END

Here the short form doesn't apply in line 6 anymore because a mathe-
matical expression has been added to the right hand side of the equals
sign. Instead the expression will be evaluated and the result (in this
case 0) will be assigned as a source register! If you want to add an off-
set like this to a register number you must use the ADDR command like
this:

Line 6

Line 6

Line 7

Line 8

&DATA_SOURCE_DISPLAY1 = ADDR(#My_Result) + 1

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-48

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

Another exception is shown in line 8. The compiler recognizes that the
register on the right hand side of the equals sign is also a data source
register. In this case it copies the value of &DATA_SOURCE_DISPLAY1 to
&DATA_SOURCE_TOTAL1 rather than it’s address. Once again, if you
wanted to copy the address you would have to use the ADDR command.

Because of the above potential problems, we recommend that you
always use the ADDR command instead of relying on the short form. If
you do forget, the compiler will issue a warning.

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-49IInntteerrmmeeddiiaattee LLeessssoonnss

LLeessssoonn 2299 –– PPrreesseettttiinngg RReeggiisstteerrss

In Lesson 14, we discussed user memories for permanent data storage
when the meter is turned off. As soon as you start using the user
memory you have to consider whether you need to initialize these reg-
isters. Have a look at this next macro.

DIM Selection[] = ["", " Set 1", " Set 2", " Set 3"]

REG &Selection = &USER_MEMORY_1

F1_BUTTON_MACRO:

IF &STATE = 0 THEN

EDIT &Selection

&EDIT_MIN = 1

&EDIT_MAX = 3

&EDIT_DEF = 1

EDIT_TEXT Selection[]

WRITE "CHOOSE"

&STATE = 1

ENDIF

END

EDIT_MACRO:

EXIT_EDIT &Selection

&STATE = 0

END

If you run this macro for the first time and press F1 you might see
garbage on the display or nothing at all. As soon as you press the UP
or DOWN buttons you will be able to select one of the three sets. The
next time you press F1 you will get your last selection on the display.

The reason for the empty or garbled display is that the user memory
register is not initialized. The EDIT command doesn't check whether its
argument lies within the boundaries of EDIT_MIN and EDIT_MAX. So if
the user memory register contains a value outside of these boundaries
the display will nevertheless try to find the string with this invalid offset.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-50

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

If you initialize the register in the RESET_MACRO you will reset it every
time at startup – so it actually becomes a volatile variable. Of course,
you could set the appropriate register using the serial protocol, but
this is pretty cumbersome. Let's see if we can do better:

DIM Selection[] = ["", " Set 1", " Set 2", " Set 3"]

REG &Selection = &USER_MEMORY_1

MEM &Selection = 1

// ...

In line 3 above you will see I have added the word MEM at the beginning
of the line followed by &Selection = 1. The MEM assignment tells the
TDS to preset the register &Selection to a value of 1.

Older versions of the TDS created a separate file with the suffix .ee.
This is no longer the case as the TDS uses a simplified version of the file
format used by the Configuration Utility.

Not all registers in the meter have a non-volatile memory backup. The
MEM command will only work with user memories and configuration reg-
isters, which do have a non-volatile memory backup. Currently MEM can-
not be used to initialize single bit registers. Instead, you have to set the
full register the bit register belongs to. For more information on configu-
ration and bit registers see Register Supplement NZ209.

The MEM command also allows you to treat any register as an array off-
set:

Line 3

MEM &SETPOINT1 [] = [100, 200, 300]

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH3 Inter Les (NZC212)

3-51IInntteerrmmeeddiiaattee LLeessssoonnss

This initializes SETPOINT1 with 100, SETPOINT2 with 200, and SET-
POINT3 with 300. The only restriction to these arrays is that they can
only handle one register type, integer, floating point or string.

The compiler will issue a warning if a value doesn't fit into a register or
is initialized more than once.

One obvious use of array initialization is the linearization table regis-
ters. The lines below show how to initialize the input and output points
for Linearization Table 1.

MEM &TABLE1_INPUT1 [] = [10, 20, 30, 40] // ...

MEM &TABLE1_OUTPUT1 [] = [1000, 2000, 3000, 4000]

// ...

Well, that works okay, but in a large table it is quite hard to match up
a specific input point with it’s respective output point.

Wouldn’t it be nice if you could actually enter input and output values
in pairs instead of two separate arrays? The TDS provides a special for-
mat just for the initialization of linearization tables as shown below.

?

MEM TABLE1 [] = [10, 1000, 20, 2000, \

30, 3000, 40, 4000] // ...

You could make this even more readable by changing it to this…

MEM TABLE1 [] = [10, 1000, \

20, 2000, \

30, 3000, \

40, 4000] // ...

Remember, this special format only works for linearization tables and
you must use the labels TABLE1, TABLE2, TABLE3, and TABLE4.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

3-52

 TDS CH3 Inter Les (NZC212)

IInntteerrmmeeddiiaattee LLeessssoonnss

This Page Intentionally Left Blank

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH4 Adv. Les (NZC212)

4AAddvvaanncceedd LLeessssoonnss

LLeessssoonn 3300 –– SSppeecciiaall SSttrr iinngg CChhaarraacctteerrss .. 22

LLeessssoonn 3311 –– HHiigghheerr MMaatthh OOppeerraattoorrss .. 33

LLeessssoonn 3322 –– LLooggiiccaall OOppeerraattoorrss.. 55

LLeessssoonn 3333 –– LLiinneeaarriizzaattiioonn .. 88

LLeessssoonn 3344 –– PPrriinnttiinngg ttoo tthhee SSeerriiaall PPoorrtt iinn MMaaccrroo MMooddee .. 99

LLeessssoonn 3355 –– AASSCCII II CChhaarraacctteerrss .. 1122

LLeessssoonn 3366 –– RReeaaddiinngg aann AASSCCII II SSttrriinngg FFrroomm tthhee SSeerriiaall PPoorrtt 1133

LLeessssoonn 3377 –– RReeaaddiinngg NNoonn AASSCCII II DDaattaa FFrroomm tthhee SSeerriiaall PPoorrtt 1177

LLeessssoonn 3388 –– SSttrr iinngg RReeggiisstteerrss .. 1188

LLeessssoonn 3399 –– PPaarrssiinngg .. 2211

LLeessssoonn 4400 –– MMooddbbuuss MMaasstteerr MMaaccrroo .. 2277

LLeessssoonn 4411 –– OOuuttppuutt ppoorrtt ffoorr sseerriiaall ccoommmmaannddss aanndd WWRRIITTEE 3322

LLeessssoonn 4422 –– TThhee IINNCCLLUUDDEE CCoommmmaanndd .. 3344

LLeessssoonn 4433 –– DDaattaa LLooggggiinngg .. 3355

LLeessssoonn 4444 –– UUSSEERR__MMEEMMOORRYY vvss.. UUSSEERR__MMEEMMOORRYY__BBYYTTEE.. 3377

LLeessssoonn 4455 –– TThhee GGOOTTOO CCoommmmaanndd.. 3399

4-2 AAddvvaanncceedd LLeessssoonnss

LLeessssoonn 3300 –– SSppeecciiaall SSttrriinngg CChhaarraacctteerrss
In earlier lessons we discussed the use of the WRITE and APPEND com-
mands with text strings. These commands allow the scrolling of a mes-
sage string across the display.

In some applications you may require information from a variable or a
predefined register to appear somewhere in the text string. The next
macro shows you how to do this:

MAIN_MACRO:

IF |SP1 = ON THEN

WRITE " ___Channel 1 = " + &CH1 + " Volts "

ENDIF

END

In the third line of this macro you will see the text WRITE
___Channel 1 = " + &CH1 + " Volts ". The first half of
this instruction looks familiar, but then it has + &CH1 + " Volts ".
The + &CH1 tells the compiler to insert the numerical value of &CH1
into the message string. Then the text + " Volts " adds the
text " Volts " on to the end of the string.

If the value of &CH1 is 1.2345 at the time the WRITE command is exe-
cuted, the message " ___Channel 1 = 1.2345 Volts " is
scrolled across the display.

This can be used with both the WRITE and the APPEND commands.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH4 Adv. Les (NZC212)

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH4 Adv. Les (NZC212)

4-3AAddvvaanncceedd LLeessssoonnss

LLeessssoonn 3311 –– HHiigghheerr MMaatthh OOppeerraattoorrss

In Lesson 9 we looked at some of the simple maths operators, but
BASIC also includes higher maths operators. Unlike the simple opera-
tors, these higher maths operators only require one operand. The fol-
lowing list shows the higher maths operators available and the allow-
able input range:

SQR Square root (positive number)

LN Natural log (base e)

LOG Common log (base 10)

SIN Sine (-65535 to +65535)

COS Cosine (-65535 to +65535)

TAN Tangent (-65535 to +65535)

SINH Hyperbolic sine (-65535 to +65535)

COSH Hyperbolic cosine*

TANH Hyperbolic tangent*

ARCSIN Arc sine (-1 to +1)

ARCCOS Arc cosine (-1 to +1)

ARCTAN Arc tangent*

Here are some examples of how these operators are used:

MAIN_MACRO:

&CH1 = LN (SIN &CH1 * COS 6) + SQR &CH2

&RESULT = 10 * LOG &CH1

END

When using higher maths operators you need to ensure that all input
values into an equation are within the acceptable range for the opera-
tor you are using. This may necessitate testing of some input values
before processing.

* These functions accept
a value in the range of
±1.175494E - 38 to
±3.402823E38.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

4-4

 TDS CH4 Adv. Les (NZC212)

AAddvvaanncceedd LLeessssoonnss

The other point to note when using higher maths operators is the
amount of processing time required. Most of these functions require
more processing power than the simple maths operators and other
functions. This is not normally a problem for small equations, but for
very complicated maths it may be. If you are using complicated formu-
las and you notice the meter or display operating slow or erratic, the
cause may be a shortage of processing time.

If you are operating the meter at the 0.01 second update rate, then
you should change this to the 0.1 second update rate.

For full details on configuring the meter display update rate, see Initial Setup
Procedures in the relevant Tiger 320 Series User Manual.

Sometimes you may be interested only in the absolute value of calcula-
tion and not whether it is positive or negative:

The ABS() function simply multiplies the expression in parentheses with
-1 if its value is negative. Please note that the parentheses are manda-
tory for this function.

&RESULT = ABS(&CH1 - &CH2)

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH4 Adv. Les (NZC212)

4-5AAddvvaanncceedd LLeessssoonnss

LLeessssoonn 3322 –– LLooggiiccaall OOppeerraattoorrss
Although not often required in simple macros, sometimes it may be
necessary to modify or test only part of a register value without
affecting or seeing the contents of the rest of the register. This is par-
ticularly true for many of the registers in the meter that are used to
control the meter’s operation. Often one register may contain individ-
ual bit flags, or groups of bit flags, that each control different meter
functions. Because of this, it would be very difficult to test the whole
register for all possible functions.

BASIC includes the following simple logic operators to solve this:

AND Logical And

OR Logical Or

XOR Logical Exclusive Or

In each case, these operators require two operands. Lets look at a
macro that uses some of these operators.

DIM A[] = ["J type","K type","R type","S type",\

"T type","B type","N type"]

F1_BUTTON_MACRO:

//Called by the operating system when the F1 button
//is pressed

IF &STATE = 0 THEN

#TEMP = &CODE2 AND 0x38

IF #TEMP = 0x8 THEN //if thermocouple
//mode then

#TC_TYPE = &CODE2 AND 0x7 //get current
//thermocouple type

EDIT #TC_TYPE

&EDIT_MAX=6

&EDIT_MIN=0

&EDIT_DEF=0

WRITE ""

WRITE "Sensor"

MMaaccrroo ccoonnttiinnuueedd oonn nneexxtt ppaaggee

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

4-6

 TDS CH4 Adv. Les (NZC212)

AAddvvaanncceedd LLeessssoonnss

EDIT_TEXT A[] //this line selects DIM A[] as
//the string array

&STATE=1

ENDIF

ENDIF

END

EDIT_MACRO:

//Called by the operating system when Prog button is
//pressed in edit mode

IF &STATE = 1 THEN

EXIT_EDIT #TC_TYPE

&CODE2 = (&CODE2 AND 0xF8) OR #TC_TYPE

ENDIF

END

The macro above allows the user to change the thermocouple (TC)
sensor type from the F1 button. The macro first checks that the meter
is running in thermocouple mode before allowing entry to select the TC
sensor type. &CODE2 sets the TC mode and sensor type. Bits 0, 1, and
2 select the TC sensor type, while bits 3,4 and 5 select the operating
mode for channel 1. Bits 6 and 7 of &CODE2 are used for other func-
tions in channel 1 that we don’t want to change.

In the 2nd line of the F1_BUTTON_MACRO you will see the instruction
#TEMP = &CODE2 AND 0x38. This means that the value of &CODE2 is
ANDed with 0x38 (hex) before it is stored in #TEMP. So, effectively we
are only looking at the TC mode (i.e. bits 3, 4 and 5). The register
&CODE2 itself is unaltered, only it’s value is used and ANDed.

If &CODE2 = 77 (dec), then let’s look at the result of ANDing this with
0x38 (hex). To understand this correctly, we first need to convert
these numbers to a binary format, because the logical operators all
operate in a bitwise fashion:

.......... FFrroomm pprreevviioouuss ppaaggee

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH4 Adv. Les (NZC212)

4-7AAddvvaanncceedd LLeessssoonnss

&CODE2 = 77 (dec) = 01001101 (bin)

0x38 (hex) = 00111000 (bin)

ANDing = 00001000 (bin)

#TEMP = 0x8 (hex)

The logical AND of two bits means that the result is a 1 only if both
bits are a 1. So in the case shown above, by ANDing with the constant
0x38 (00111000 bin), we are effectively only looking at bits 3, 4, and
5, and are ignoring all other unwanted bits. The result that is loaded
into #TEMP is 00001000 (bin) which equals 0x8 (hex).

In the third line of the EDIT_MACRO you will see the instruction &CODE2
= (&CODE2 AND 0xF8) OR #TC_TYPE. In this case, the brackets force
&CODE2 to be ANDed with 0xF8 first, and then ORed with the variable
#TC_TYPE. The logical OR of two bits means that if either bit is a 1, the
result is 1. Assuming that &CODE2 = 77 and #TC_TYPE = 3, this is the
result.
&CODE2 = 77 (dec) = 01001101 (bin)

0xF8 (hex) = 11111000 (bin)

ANDing = 01001000 (bin)

#TC_TYPE = 3 (dec) = 00000011 (bin)

ORing = 01001011 (bin)

#TEMP = 75 (dec)

The logical exclusive or (XOR) of two bits means that if either bit is a 1,
the result is a 1, excluding the case when both bits are a one. This
operator is useful when looking for a difference in bits between two
variables or registers. Any bits that are not zero indicate a difference.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

4-8

 TDS CH4 Adv. Les (NZC212)

AAddvvaanncceedd LLeessssoonnss

LLeessssoonn 3333 –– LLiinneeaarriizzaattiioonn
The Tiger 320 Series meter includes up to four tables that are used for
linearization of an input signal. The meter can be configured so that
each of the four input channels can have a user defined linearization
curve applied to it.

The TDS also includes an instruction called SCALE that allows any regis-
ter or variable to have the same linearization applied to it. Here’s how
it is used:

MAIN_MACRO:

#TEMP = &CH1 + &CH2 + &CH3

&RESULT = SCALE (#TEMP, 2)

END

In line 2, #TEMP is loaded with &CH1 + &CH2 + &CH3. The next line
reads &RESULT = SCALE (#TEMP, 2). The text SCALE (#TEMP, 2),
tells the compiler to apply the linearization curve, specified in Table 2,
to the value stored in variable #TEMP. After linearization, the new value
is then stored in &RESULT. The value of #TEMP is not changed by the
SCALE instruction.

When using the SCALE(x,y) instruction, x can be a number, a variable
or a predefined register. While y specifies the 32-point table to be
used for linearization and must be a number from 1 to 4. The curve in
tables 1 to 4 must be programmed in the usual way, as described in
the Tiger 320 Series user manual Linearizing Supplement (NZ207).

The SCALE instruction requires more processing time than many of the
standard instructions. If it is executed many times over in the same
macro, it may slow down the overall performance of the meter. This is
of particular importance if the meter is being run in the fast update
mode.

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH4 Adv. Les (NZC212)

4-9AAddvvaanncceedd LLeessssoonnss

LLeessssoonn 3344 –– PPrriinnttiinngg ttoo tthhee SSeerriiaall PPoorrtt iinn MMaaccrroo MMooddee

Tiger 320 Series meters incorporate several modes of serial communica-
tions. Included in these are industry standards such as Modbus and
Devicenet, and also a simple ASCII and printer mode developed by
Texmate. However, in some applications, these modes may not be suitable.

For instance, you may need to print several different messages to a
printer, but the standard print mode in the meter only provides one. Or
maybe you are trying to control an instrument that uses a nonstandard
protocol.

The TDS allows you to send a string of characters to the serial port
with the PRINT instruction. To use the PRINT instruction, the meter
must be set to macro mode in Code 3[XX2] and the baud rate, parity,
time delay, and address must be set up correctly in the Calibration
Mode [20X].

F1_BUTTON_MACRO:

PRINT "Hello World"

END

That’s all there is to it! I used the F1_BUTTON_MACRO this time so that
the message prints to the serial port every time the F1 button is
pressed.

The PRINT instruction can also be used with special string characters,
similar to the WRITE instruction. Here’s an example:

The PRINT instruction has many similarities to the WRITE instruction,
with a few additions. Remember the first macro we wrote? Well let’s
try it again, but this time, instead of sending it to the display of the
meter, we’ll send it to the serial port so that it can be printed on a
serial printer.

For full details on configuring the meter in the MACRO Mode, see Serial
Communications Module Supplement (NZ202).

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

4-10

 TDS CH4 Adv. Les (NZC212)

AAddvvaanncceedd LLeessssoonnss

This macro prints a string to the serial port once per second. The
PRINT instruction in line 4 tells the compiler to print the string
"Channel 1 = ", then the current value of &CH1, and then the string
" Volts".

If you download and run the above macro, you will find that it keeps print-
ing in a long line across the page. This is because I haven’t included any
carriage returns or line feeds. The next macro should fix this problem:

MAIN_MACRO:

IF &TIMER1 > 10 THEN

&TIMER1 = 0

PRINT "Channel 1 = "+&CH1+" Volts"+CHR(CR)+CHR(LF)

ENDIF

END

As you can see, on the end of the PRINT instruction I have added +
CHR(CR) + CHR(LF). This text tells the compiler to add the ASCII
character number for a carriage return (CR) and a line feed (LF).
These are special ASCII characters that tell the printer where to start
printing. There are several of these special characters that can be
used. These are as follows:
CR carriage return
LF line feed
BS back step
NUL (or NULL) null character
ESC escape character
TAB tab character
FF form feed
VTAB vertical tab
BELL ‘beep’

MAIN_MACRO:

IF &TIMER1 > 10 THEN

&TIMER1 = 0

PRINT "Channel 1 = " + &CH1 + " Volts"

ENDIF

END

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH4 Adv. Les (NZC212)

4-11AAddvvaanncceedd LLeessssoonnss

For some applications, you may need to send other non-printable ASCII
characters to the serial port. This is often the case if the meter is con-
nected to a PC instead of a printer, You can do this by using the
PRINT CHR(x), where x can be any number from 0 to 255. You can
use decimal, octal, or hexadecimal numbers for x, as shown in the fol-
lowing macro:

An octal number has a leading 0, and a hexadecimal number has a lead-
ing 0x.

The rules regarding the PRINT instruction are similar to those for the
WRITE instruction. The PRINT command can only print one string at a
time. If you try printing a new string before the current string has fin-
ished, the macro terminates and hands control back to the operating
system of the meter.

After a print string has been completely sent, the serial port is reset
into a standby mode. In standby, it is ready to receive serial data or
transmit new data with the PRINT instruction.

If you want to stop a current string from being printed you can use the
instruction PRINT "" (i.e. a print instruction with an empty string).
This functions similar to the WRITE "" instruction. It flushes the serial
buffer and sets the serial port into standby mode.

An important point to note is that the meter has only one serial buffer,
which is shared between transmit and receive. If you use the PRINT ""

instruction while serial data is being received, you could clear part, or
all of a received message. In Lesson 36 we will learn more about the
receive side of the serial port.

The meter only operates in half duplex, which means that it can be
either transmitting or receiving, but not both at the same time.

MAIN_MACRO:

IF &TIMER1 > 10 THEN

&TIMER1 = 0

PRINT CHR(0xAA)+CHR(0xAA)+CHR(11)+"Hello " + \
"World"+ CHR(0127)+CHR(NUL)

ENDIF

END

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

4-12

 TDS CH4 Adv. Les (NZC212)

AAddvvaanncceedd LLeessssoonnss

LLeessssoonn 3355 –– AASSCCIIII CChhaarraacctteerrss
In lesson 28 I introduced the CHR() function to send arbitrary ASCII charac-
ters with the PRINT command. For the most common characters (carriage
return, line feed...) ASCII code constants are available (CR, LF...). All stan-
dard alphanumeric characters can be entered directly in the string.

F1_BUTTON_MACRO:

PRINT "RESULT = " + &RESULT + CHR(CR) + CHR(LF)

END

However, the meter includes registers for an optional text character in the
least significant digit of the display. These registers need to be loaded with
the ASCII code of the character required. For example, if Channel 1 was
measuring watts and you wanted to display a "W" in the right hand side of
the display, you can do this:

RESET_MACRO:

&TEXT_CHARACTER_CH1 = ASC("W") // "W" for Watts

// to disable character display

// &TEXT_CHARACTER_CH1 = NULL

END

RESET_MACRO:

&TEXT_CHARACTER_CH1 = 0x57 // "W" for Watts

END

That’s great, but you first have to know what the ASCII code for the
letter "W" is! Instead of looking up the corresponding ASCII code your-
self, you can also use the ASC() function which returns the ASCII code
of a given character.

Keep in mind that not all ASCII characters can be displayed. If you want to
return to the standard display without a character in the least significant
digit, set the character register to 0 or NULL:

F1_BUTTON_MACRO:

// to disable character display

&TEXT_CHARACTER_CH1 = NULL

END

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH4 Adv. Les (NZC212)

4-13AAddvvaanncceedd LLeessssoonnss

LLeessssoonn 3366 –– RReeaaddiinngg aann AASSCCIIII SSttrriinngg FFrroomm tthhee SSeerriiaall PPoorrtt

In Lesson 34 we looked at the PRINT instruction, which is used to send
(or transmit) data from the meter to another device. For printing appli-
cations, or data logging to a PC, this is usually all that is needed.

However, for more sophisticated applications, it is often necessary for
the meter to send and receive data, and in many cases, other devices
will have their own communications protocol. The macro allows you to
create your own serial protocol and access the serial port using the
Macro mode. In Macro mode, only very low level serial port functions
are handled by the meter, leaving protocol issues to be handled by the
macro. The meter looks for a specified string, stores the string in it’s
receive buffer, and leaves the rest up to the macro.

Messages can be either fixed or variable length, and most serial proto-
cols use a special character in the message string to signal the start or
the end of the string. The Tiger 320 Series meter has two predefined
registers that allow it to extract the required string from an incoming
message. These are called &STRING_LENGTH and &STRING_CHARACTER.
The following macro shows the use of these two registers and the seri-
al port in Macro mode:

MAIN_MACRO:

IF &TIMER1 > 10 THEN

&TIMER1 = 0

PRINT "" //clear buffer and reset serial port

PRINT "SR2*" //read the display register in
//remote meter

&STRING_LENGTH = 0 //receive string is variable
//length, so string length=0

&STRING_CHARACTER = 10 //end of string character=
//line feed (10)

ENDIF

MMaaccrroo ccoonnttiinnuueedd oonn nneexxtt ppaaggee

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

4-14

 TDS CH4 Adv. Les (NZC212)

AAddvvaanncceedd LLeessssoonnss

IF |RECEIVE_READY = ON THEN

#TEMP_CHAR = &RECEIVE_BUFFER[0]

IF #TEMP_CHAR <> 0 THEN

&RESULT = &RECEIVE_RESULT

ENDIF

ENDIF

END

The above macro is designed for two Tiger meters connected together
through the serial ports. The meter running the macro is set to Macro
mode, while the second meter is set to ASCII mode. The macro shown
here is written to copy the ASCII mode, but acting as a master. Every
second, the macro sends a request to the second meter and waits for
a response.

For full details on configuring the meter in the Macro Mode, see Serial
Communications Module Supplement (NZ202).

In the fourth line, the PRINT "" instruction clears the serial buffer and
resets the serial port. The next line then prints the message "SR2*" to
the serial port. In the Texmate ASCII mode, SR2* is a request to read
the display register of the meter. The expected result from the second
meter is an ASCII number of varying length, terminated in a carriage
return and line feed.

For variable length messages, the register &STRING_LENGTH is set to
zero, which tells the meter to expect a string of unknown length. If
&STRING_LENGTH equals zero, the register &STRING_CHARACTER func-
tions as an end of message (or terminating) character, so in this case, it
is loaded with the ASCII character for a line feed (i.e. 10). The meter then
keeps receiving data until it finds a line feed character, and then it sets
the |RECEIVE_READY flag to say that it has received a new message.

.......... FFrroomm pprreevviioouuss ppaaggee

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH4 Adv. Les (NZC212)

4-15AAddvvaanncceedd LLeessssoonnss

The next part of the macro checks the |RECEIVE_READY flag. If it is
true, it then loads the variable #TEMP_CHAR with the first byte of data
from the receive buffer. The receive buffer is treated as an array, with
the first byte located at &RECEIVE_BUFFER[0] and the last byte at
&RECEIVE_BUFFER[99]. In this macro, the first byte of the receive
buffer is checked for a value other than zero, because zero is an ASCII
null, which signals an error condition in the ASCII mode.

If the first byte is not a zero, then the register &RESULT is loaded with
a register called &RECEIVE_RESULT. This is a special register used by
the meter in macro mode, to store numeric values from an ASCII string.
When a message is received that contains a string of ASCII numerals,
the meter picks out the first string of numerals and stores them in the
register &RECEIVE_RESULT. They are stored in a fixed point format and
the decimal point is ignored, so a string of 12.345 will be stored as
12345. Any following numeric values in the same string are ignored.

Some devices use a fixed length message with a start character at the
beginning of the string. In this mode, &STRING_LENGTH is loaded with a
value from 1 to 255, which defines the total length of the string you
want to receive. The register &STRING_CHARACTER is then loaded with a
number from 0 to 255, which defines the start of string character. In
this mode, the meter searches through the incoming serial data, discard-
ing data until it finds the correct start character. It then reads in the
specified number of bytes of data and sets the |RECEIVE_READY flag.

When the meter has set the |RECEIVE_READY flag, in either mode, it
disables the serial receive mode and waits for the macro to reset it.
Another register called &RECEIVE_COUNT can be used to determine the
total length of the receive string.

You can also compare a received message with an ASCII text string, as
shown in the following macro:

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

4-16

 TDS CH4 Adv. Les (NZC212)

AAddvvaanncceedd LLeessssoonnss

MAIN_MACRO:

&STRING_CHARACTER = 10

&STRING_LENGTH =0

IF |RECEIVE_READY = ON THEN

IF SERIAL_INPUT = "HELLO" THEN

WRITE " ___YOU GOT IT RIGHT! "

ENDIF

PRINT ""

ENDIF

END

The line IF SERIAL_INPUT = "HELLO" THEN tells the compiler to
compare the received string with the text HELLO, and if it is the same
it executes the code under the IF instruction. It starts comparing each
character in the string, starting from the first character in the string
(i.e. &RECEIVE_BUFFER[0]). This instruction is case sensitive, so each
character must be an exact match. If the received string is longer than
the test string, the rest of the characters in the received string are
ignored.

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH4 Adv. Les (NZC212)

4-17AAddvvaanncceedd LLeessssoonnss

LLeessssoonn 3377 –– RReeaaddiinngg NNoonn AASSCCIIII DDaattaa FFrroomm tthhee SSeerriiaall PPoorrtt
In Lesson 36 we considered message strings that were made up of
ASCII characters, but sometimes non ASCII data is also used. This can
still be done with the macro, but it is more involved.

You still need to set up &STRING_LENGTH and &STRING_CHARACTER. To
test the received data you can still use the string compare test as follows:

MAIN_MACRO:

&STRING_CHARACTER = 0x55

&STRING_LENGTH = 5

IF |RECEIVE_READY = ON THEN

//check for 0x55,0xAA,0x00

IF SERIAL_INPUT = CHR(0x55)+CHR(0xAA)+CHR(0) THEN

&RESULT = (&RECEIVE_BUFFER[3] * 256)+ \
&RECEIVE_BUFFER[4] // get data

ENDIF

PRINT ""

ENDIF

END

Instead of testing for a complete ASCII string, this macro tests for a
start sequence of 0x55, 0xAA, 0x00, using the line IF SERIAL_INPUT
= CHR(0x55) + CHR(0xAA) + CHR(0) THEN. This uses the CHR(x)
instruction, which enables you to test for any number between 0 and
255 in decimal, hex, or octal.

If the macro finds the correct start sequence, it then extracts the
fourth and fifth bytes from the receive buffer and treats these as data.

For more complicated protocols, you can interrogate each byte of the
received message separately by accessing &RECEIVE_BUFFER[x],
where x can be a number from 0 to 99, or a variable or register. You
can also use the predefined register &RECEIVE_COUNT to determine the
length of the new message.

In the Tiger 320 series, only a small number of string registers are
available such as the print string and the display texts (e.g. SP_1 or
CH_3). In a macro they can only be preset with the MEM command
during the macro download. All other texts have to be constant. Even
the text string arrays - defined with the DIM command (in lesson 19) -
are actually constant, even though they can be used with a variable
index with the WRITE/APPEND command. Here's an example of a macro
which prints different messages on a 320 series meter.

In line 1 the DIM command defines the text string array that is used in
lines 21-23 to show the current message according to the status of

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

4-18

 TDS CH4 Adv. Les (NZC212)

AAddvvaanncceedd LLeessssoonnss

LLeessssoonn 3388 -- SSttrriinngg RReeggiisstteerrssLLeessssoonn 3388 -- SSttrriinngg RReeggiisstteerrss

DIM ConstMsg[] = [" ", "OK", "ABOVE", "BELOW"]

CONST mSPACE = 0

CONST mOK = 1

CONST mABOVE = 2

CONST mBELOW = 3

RESET_MACRO:

#msg_index = mOK

END

MAIN_MACRO:

if |SP1 = on then // above high setpoint
#msg_index = mABOVE

elsif |SP2 = on then // below low setpoint
#msg_index = mBELOW

else
#msg_index = mOK // between setpoints

endif

// show current message

write ConstMsg[mSPACE]

append ConstMsg[#msg_index]

append ConstMsg[mSPACE]

END

Line 1

Line 21

Line 22

Line 23

the setpoints.

The notation used with WRITE/APPEND in this macro is unique to text
string arrays. It cannot be used with the PRINT command or with regis-
ter arrays with a variable index.The above macro has two disadvan-
tages: If you want to change the texts you actually have to change the
macro. The second problem is that these texts are stored in the macro
area. So if you have a very complicated macro and at the same time
want to use a lot of text messages, you may actually run out of space.
Therefore in the Tiger 380 series 64 USER_TEXT registers as well as 8
text variables have been added. These can be used for text messages
on the display or forserial communication. So let's have a look how the
above macro would look like with text registers:

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH4 Adv. Les (NZC212)

4-19AAddvvaanncceedd LLeessssoonnss

Line 22

Line 23

Line 3

REG &CUR_MSG = &TEXT_VARIABLE1

REG &MSG = &USER_TEXT1

MEM &MSG[] = ["OK", "ABOVE", "BELOW"]

CONST mOK = 0

CONST mABOVE = 1

CONST mBELOW = 2

RESET_MACRO:

#msg_index = mOK

END

MAIN_MACRO:

if |SP1 = on then // above high setpoint
#msg_index = mABOVE

elsif |SP2 = on then // below low setpoint
#msg_index = mBELOW

else
#msg_index = mOK // between setpoints

endif

// show current message

&CUR_MSG = &MSG[#msg_index] // copy text to variable

write " " + &CUR_MSG + " "

END

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

4-20

 TDS CH4 Adv. Les (NZC212)

AAddvvaanncceedd LLeessssoonnss

In line 3 the registers USER_TEXT1 to USER_TEXT3 are preset with
messages. As with the USER_MEMORY registers it is recommended to
initalize these registers before their first use. In line 22 the current
message is copied to a text variable register. This is necessary as the
WRITE/APPEND/PRINT command cannot cope with a register array with
variable index.

Finally, in line 23 the copy of the message is sent to the display, just
like any other register.

Besides copying one text register to another, you can also assign a
constant string to a text register. Furthermore you can compare text
registers or constant strings with each other, whether they are equal
or not. As each text register can hold up to 30 characters you can
save up to 2 KB of macro space when you change from DIM arrays to
USER_TEXT registers. But the more interesting advantage is that the
texts can be changed without having to change the macro. So when
you use these texts for your user interface, your customer could
change these - for example translate it into another language - with
the Configuration Utility. Also for industrial use, several meters may be
used in the same plant but in different locations. Here you could use
the location as identifier for service calls:

REG &ID = &USER_TEXT1

REG &LOCATION = &USER_TEXT2

MEM &ID = "Tank Station"

MEM &LOCATION = "Block A 21"

CUSTOMER_ID_MACRO:

write " " + &ID + " --- " + &LOCATION \

+ " "

END

In lessons 36 and 37 we learned how to read incoming serial data and
that we can compare the SERIAL_INPUT to a constant string. This is
fine as long as you are only waiting for a single message from a single
device.

But when you connect several devices together over a RS485 bus or
via Ethernet you will have to deal with various messages. Even though
there are a few widespread protocols like Modbus to deal with that sit-
uation, there are many different serial protocols that are only used by
a single manufacturer. In this lesson we will show you how the Tiger
380 can help you to deal with custom protcols.

As an example, let us assume that our meter is in Macro mode and
therefore does not automatically act upon serial commands - not even
in our own Texmate ASCII protocol.

Usually it is easier just to use another serial port for the communication
in ASCII mode (currently the Tiger 380 can have up to 3 serial ports)
but here we want to show you how to deal with the parsing:

CONST DO_READ = ASC("R")

CONST DO_WRITE = ASC("W")

RESET_MACRO:

#address = 0

#command = DO_READ

#register = 0

&STRING_LENGTH1 = 0

&STRING_CHARACTER1 = ASC("*")

END

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH4 Adv. Les (NZC212)

4-21AAddvvaanncceedd LLeessssoonnss

LLeessssoonn 3399 -- PPaarrssiinngg

MMaaccrroo ccoonnttiinnuueedd oonn nneexxtt ppaaggee

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

4-22

 TDS CH4 Adv. Les (NZC212)

AAddvvaanncceedd LLeessssoonnss

.......... FFrroomm pprreevviioouuss ppaaggee

Line 25

Line 45

Line 47

MAIN_MACRO:

if |RECEIVE_READY1 = true then

&SERIAL_POINTER1 = 0

if SERIAL_POINTER 1 = "S" then

#address = INTEGER(SERIAL_POINTER 1, 3)

if #address <> &SERIAL_ADDRESS1 then

print "" : write "not me" : END

endif

#command = &RECEIVE_BUFFER1[&SERIAL_POINTER1]

&SERIAL_POINTER1 = &SERIAL_POINTER1 + 1

#register = INTEGER(SERIAL_POINTER 1, 5)

if #command = DO_READ then

if &SERIAL_POINTER1 <> &RECEIVE_COUNT1 then

print "" : write "error" : END

endif

select #register

case addr(&CH1):

print &CH1 + CHR(CR) + CHR(LF)

default:

print CHR(NULL) + CHR(CR) + CHR(LF)

endsel

elsif #command = DO_WRITE then

if SERIAL_POINTER 1 <> "," then

print "" : write "error" : END

endif

select #register

case addr(&OFFSET_CH1):

|NON_VOLATILE_WRITE = on

&OFFSET_CH1 = INTEGER(SERIAL_POINTER 1)

case addr(&SCALE_FACTOR_CH1):

|NON_VOLATILE_WRITE = on

&SCALE_FACTOR_CH1 = FLOAT(SERIAL_POINTER 1)

endsel

print ""

Line 14

Line 15

Line 16

Line 20

Line 21

MMaaccrroo ccoonnttiinnuueedd oonn nneexxtt ppaaggee

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH4 Adv. Les (NZC212)

4-23AAddvvaanncceedd LLeessssoonnss

Line 49

Line 52

else

print ""

endif

else

print ""

endif

endif

END

.......... FFrroomm pprreevviioouuss ppaaggee

The parsing commands are all based on the serial pointer which indi-
cates the position in the RECEIVE_BUFFER where parsing commands
start to look for a pattern match.

In line 14 the &SERIAL_POINTER1 register is reset to 0 so the next
parsing command begins at the start of the buffer. With the string
comparison in line 15 we look for the first occurence of an S in the
buffer.

In line 15, "SERIAL_POINTER 1" is a special reference which effectively
says IIFF tthhee ssttrriinngg ssttaarrttiinngg aatt tthhee ppoossiittiioonn ppooiinntteedd ttoo bbyy
&&SSEERRIIAALL__PPOOIINNTTEERR11 ssttaarrttss wwiitthh ""SS"" TTHHEENN. Because it is a com-
mand it does not have the '&' prefix and should not be confused with
the register &SERIAL_POINTER1.

The &SERIAL_POINTER1 register indicates the current position in the
RECEIVE_BUFFER1 (starting with 0) and can be read or written to like
any other register.

When the parsing routines use the SERIAL_POINTER command - with-
out '&' prefix - the value of &SERIAL_POINTERx will be modified to
point to the position after the matching pattern.

So if the first character really is an S, the &SERIAL_POINTER1 will be 1
in the next line. But if there are more characters in front of the S they
will be simply ignored and the pointer will be set after the S. If there is
no S at all in the string the condition will be false and the pointer will
stay where it was before the test.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

4-24

 TDS CH4 Adv. Les (NZC212)

AAddvvaanncceedd LLeessssoonnss

This is different from the string comparison with the SERIAL_INPUT
which always starts searching from the beginning of the string and
leaves the serial pointer set to 0 when there is no match.

If you use multiple comparisons in a condition, each comparison will be
evaluated from left to right (even if you use OR and the first condi-
tion is already true). This has to be considered as each comparison
with either SERIAL_INPUT or SERIAL_POINTER might change the serial
pointer.

The INTEGER command in line 16 looks for numbers and decimal points
at the SERIAL_POINTER. Multiple decimal points are possible but each
will be ignored as by definition an integer does not have any decimals.
Any other characters before the number will be ignored any other char-
acter after the number will terminate the pattern match and the point-
er will stop at that position.

The second parameter is optional and restricts the search to a maxi-
mum of 3 characters. The serial address of the Tiger is in the range
from 0 to 255 so there should be only 3 number characters for a valid
address. Without this restriction the command will try to match as
many consecutive numbers and decimal points as possible. So for our
protocol we would not really need the restriction as the following pat-
tern is a text character.

To match a single character it is easier to directly access the receive
buffer (see Lesson 37). But as we do not use a parsing command in
line 20, we have to increase the serial pointer explicitely in line 21.

The FLOAT command in line 45 works similar to the INTEGER command,
but only one decimal point is allowed. The pattern also matches a two
digit (signed) exponent, for example -1.234E-02 or -0.001234e1
would both be recognized as -0.01234.

Finally, we have to reset the serial communication registers with a
PRINT "" (line 47, 49, and 52). This will clear the RECEIVE_READY flag
and reset the RECEIVE_COUNT as well as a few more internal registers.
However, it will _not_ reset the &SERIAL_POINTER register.

The above macro has been written to work with serial port 1 but could
just as easily have been written to work with a different serial port by
replacing the 1 in the appropriate registers and commands with the

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH4 Adv. Les (NZC212)

4-25AAddvvaanncceedd LLeessssoonnss

number of the required serial port. If no number is specified in a special
command like SERIAL_POINTER or SERIAL_INPUT then port 1 is used by
default.

So much for the simple Texmate ASCII protocol - simple because it
does not care whether the data is correctly received or not. You would
have to confirm that with another request - or use the Modbus proto-
col to start with. But there are many serial protocols that include a
checksum to ensure that the messages are correctly received. Here is
a small subroutine to handle that:

In this example we assume that the last two bytes before the termi-
nating character are the 16bit checksum. So in line 3 the serial pointer
is reset to the position of the checksum.

The HEX command in line 4 looks for hexadecimal numbers (0-9a-fA-F)
- no decimal point allowed. The HEX command automatically limits the
pattern length to 8 characters as we only have 32bit registers to store
the data. But you can restrict it even more with the optional second
parameter.

Apart from the parsing commands for the number conversions the seri-
al pointer can also be used to copy a string to a text register:

check_data:

|data_corrupt = true

&SERIAL_POINTER1 = &RECEIVE_COUNT1 - 2

#temp = HEX(SERIAL_POINTER 1, 2)

#checksum = 0

for #index = 0 to &RECEIVE_COUNT1 - 3

#checksum = #checksum + &RECEIVE_BUFFER[#index]

next #index

if #temp = (#checksum and 0x0000ffff) then

|data_corrupt = false

endif

return

Line 3

Line 4

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

4-26

 TDS CH4 Adv. Les (NZC212)

AAddvvaanncceedd LLeessssoonnss

The assignment in line 3 copies the text from the buffer until it
encounters the end-of-string character NULL. At the moment there is
no limiting parser command as for the numbers. Therefore a NULL
character is written to the serial buffer in line 1.

So the text in &TEXT_VARIABLE1 will contain the characters from
index 2 to 9.

Writing to the RECEIVE_BUFFER actually overwrites the received data.
So if you want to extract a substring in this fashion you have to parse
the data after the string first!

&RECEIVE_BUFFER1[10] = CHR(NULL)

&SERIAL_POINTER1 = 2

&TEXT_VARIABLE1 = SERIAL_POINTER

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH4 Adv. Les (NZC212)

4-27AAddvvaanncceedd LLeessssoonnss

LLeessssoonn 4400 -- MMooddbbuuss MMaasstteerr MMaaccrroo

CONST mbREAD = 0

CONST mbWRITE = 1

RESET_MACRO:

#modbus = mbREAD

&DATA_SOURCE_DISPLAY1 = addr(&RESULT)

&POLL_TIME=200 // run Modbus master macro every 2 secs

&RESPONSE_TIME=10 // time out if no reply in 1 sec

END

F1_BUTTON_MACRO:

#modbus = mbWRITE

&RESULT = 0 // reset remote counter

END

Line 7

Line 8

In lessons 34-36 we talked about the serial Master/Slave ASCII proto-
col. This is often enough for communication between two Tiger meters
or with another device.

However, in many industrial applications there are often more than two
devices talking to each other and they may not be similar devices. To
simplify communications these different devices typically speak the
same language: a common protocol like Modbus.

Similar to our ASCII protocol, there is one master and up to 246 slaves,
each with a unique address. The master can read or write to 16bit reg-
isters in the slaves. The messages include a checksum to confirm that
the data was received correctly. The slaves always give a response,
either the requested or changed value or an error message.

Even though the Tiger 320 can already be configured as a Modbus
slave, only the Tiger 380 is able to work as a Modbus master. So let's
have a look how this is done:

MMaaccrroo ccoonnttiinnuueedd oonn nneexxtt ppaaggee

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

4-28

 TDS CH4 Adv. Les (NZC212)

AAddvvaanncceedd LLeessssoonnss

In this example two Tiger 380 meters are connected to each other,
both with &CH3 setup as a counter. The master meter polls &CH3 from
the slave every two seconds. If the F1 button is pressed it will reset
&CH3 on the slave to 0, if F2 is pressed it will set it to the value of its
own &CH3.

All Modbus commands must be invoked within a
MODBUS_MASTER_MACRO (line 21). If you attempt to use a Modbus
read/write command in another macro the compiler will issue an error.
The reason for this is that the serial communication usually takes
longer than one macro cycle. So when the MODBUS_MASTER_MACRO
issues a Modbus command it waits in the background for the response.
As soon as it gets the response it continues with the next instruction.
That way the meter doesn't freeze until it gets a reply and you don't
have to check for a reply in the macro.

Line 21

Line 30

Line 25

F2_BUTTON_MACRO:

#modbus = mbWRITE

&RESULT = &CH3 // synchronize remote counter

END

MODBUS_MASTER_MACRO:

select #modbus

case mbREAD:

|LED1 = on

MODBUS_READ (5, addr(&CH3), &RESULT)

gosub check_message

|LED1 = off

case mbWRITE:

|LED6 = on

MODBUS_WRITE (5, &RESULT, addr(&CH3))

gosub check_message

#modbus = mbREAD

|LED6 = off

endsel

END

.......... FFrroomm pprreevviioouuss ppaaggee

TThhee MMooddbbuuss
MMaasstteerr MMaaccrroo

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH4 Adv. Les (NZC212)

4-29AAddvvaanncceedd LLeessssoonnss

You will notice that the RESET_MACRO loads two new registers in lines
7 and 8. The &POLL_TIME register effectively sets the rate at which
the MODBUS_MASTER_MACRO is executed (or called). A count of 1 in
&POLL_TIME represents a time interval of 0.01 seconds. Here we have
set this to a value of 200 which means that the
MODBUS_MASTER_MACRO will be run every 2.0 seconds. The second
register &RESPONSE_TIME sets the maximum time the meter will wait
for a reply to be returned from a slave device. A count of 1 in
&RESPONSE_TIME represents a time interval of 0.1 seconds. If the
master does not receive a reply from the slave device within this time,
it continues on with the next line in the MODBUS_MASTER_MACRO.

OK, let's have a closer look at the actual Modbus commands. In line 25
the master sends a read request to device number 5. The request is
for the &CH3 register on the slave and the data is stored in the local
&RESULT register. In line 30 the master sends a write request to
device number 5. The request is to write the value of the local
&RESULT register to the &CH3 register on the slave.

So for both commands the parentheses contain: device number, data
source, and data destination.

In line 27 we use the addr() command to determine the source register
number on the remote device. If you are not talking to another Tiger
380 you will have to enter the register number directly including the
reference offset of 30000 or 40000. The same is true for write
requests: here you have to enter the destination address with the ref-
erence offset of 40000. Only output registers (of reference type 4x)
and input registers (reference type 3x) are supported with these com-
mands. Coil/Bit addresses (reference type 0x and 1x) are currently not
supported.

But wait a minute, &CH3 and &RESULT are 32bit registers whereas
Modbus can only send 16bit values. So what happens to values that
are greater than 16bit?

Well, we simply send two consecutive registers for each 24/32bit reg-
ister :-) This workaround is actually used by many other Modbus
devices. To make it easier for you, the compiler determines from the
type of the local register (the data destination for read, the data
source for write) whether it should read/write one or two registers.

?

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

4-30

 TDS CH4 Adv. Les (NZC212)

AAddvvaanncceedd LLeessssoonnss

However, if you know that the value is only 16bit you can explicitely
tell it to use only a single register.

Possible values for this optional fourth paramter are:

8 bit: MB_BYTE

16 bit: MB_SHORT

24 bit: MB_24, MB_24_SWAPPED

32 bit: MB_LONG, MB_LONG_SWAPPED, MB_FLOAT,
MB_FLOAT_SWAPPED

Register pairs will be used for 24bit and 32bit register types.

The Tiger 380 uses only odd numbers for 24/32bit registers so they
can be read as pairs of consecutive registers in Modbus mode.
However, on the Tiger 320 these paired registers are mapped to differ-
ent register numbers in Modbus mode (see Tiger 320 Series Register
Supplement).

Maybe you have noticed, that after the read and write command we
call the following subroutine:

The Modbus standard defines 8 different exception errors that can be
sent by the slave device instead of a regular reply. These are stored in
bits 0-3 of the MODBUS_MASTER_FLAGS register. In addition three fur-
ther errors which are detected by the master meter are indicated in
bits 4-6. If no errors are detected by the master meter, bit 7 is set:

MODBUS_READ (5, 515, &RESULT, MB_SHORT)

check_message:

if (&MODBUS_MASTER_FLAGS and 0x7f) <> 0 then

write " ___ERROR - " + &MODBUS_MASTER_FLAGS \

+ " "

endif

return

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH4 Adv. Les (NZC212)

4-31AAddvvaanncceedd LLeessssoonnss

MODBUS_MASTER_FLAGS

bit 0 - bit 3 = Exception errors (Modbus standard)

1 = illegal function

2 = illegal data address

3 = illegal data value

4 = slave device failure

5 = acknowledge

6 = slave device busy

7 = negative acknowledge

8 = memory parity error

bit 4 = message timeout

bit 5 = CRC receive error

bit 6 = data type error

bit 7 = reception complete or waiting for a new command

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

4-32

 TDS CH4 Adv. Les (NZC212)

AAddvvaanncceedd LLeessssoonnss

For the Tiger 380 series there is a dual serial module available. Even
though you may use one port only for a dedicated purpose (like talking
to an HMI) you still can choose whether that is port 1 or 2. Just add
the port number after the serial command:

If you don't specify the port it will default to port 1.

This port infix can also be used in Modbus master mode:

For multiple display meters (DI503, DI602 and DI802) the WRITE com-
mand has also been extended to directly address the display you want
to write to:

LLeessssoonn 4411 -- OOuuttppuutt ppoorrtt ffoorr sseerriiaall ccoommmmaannddss aanndd WWRRIITTEE

PRINT "Hello World from port 1" // use default port 1

PRINT 1 "Hello World from port 1" // use port 1

PRINT 2 "Hello World from port 2" // use port 2

IF SERIAL_POINTER 2 = "1.23" THEN

#my_var = FLOAT(SERIAL_POINTER 2) * 100

ENDIF

MODBUS_MASTER_MACRO:

// read remote CH3

MODBUS_READ 2 (5, addr(&CH3), &RESULT)

// write to remote CH3

MODBUS_WRITE 2 (5, &RESULT, addr(&CH3))

END

IF |SP1=ON THEN

WRITE 1 " __ACTIVATED " // write to top display

ELSE

WRITE 2 " __DEACTIVATED " // write to bottom

ENDIF

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH4 Adv. Les (NZC212)

4-33AAddvvaanncceedd LLeessssoonnss

Again if you don't specify it, the default display will be used.

For dual line displays the default is display 2 (bottom). For the DI503
the default display is 1 (Top).

It is not possible to scroll messages simultaneously on more than one
display at a time.

In edit mode you cannot write to display 1 as it is used for the edit
value.

There is no infix notation for the APPEND command, but any appended
message will be added to the write string in the normal manner and will
be directed to the display specified in the preceding write command.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

4-34

 TDS CH4 Adv. Les (NZC212)

AAddvvaanncceedd LLeessssoonnss

As was mentioned before, you should use CONST definitions and rede-
fine some register names (especially when it comes to USER_MEMORY
registers) to improve the readability of your code.

Whether you work on more than one project, or create variations of
the same application, it is easier to use existing code or definitions in
more than one macro.

For this purpose you can INCLUDE another basic file like this:

This command performs a simple textual include - it works just like a
copy&paste at the position where the INCLUDE is. Therefore the includ-
ed file could also contain a subroutine or a predefined macro. But you
have to be careful when you make changes to the included file as you
have to consider its effects for all macros that include the file.

You can have up to 10 nested includes, i.e. file1 includes file2 that
includes file3 that ... that includes file10.

LLeessssoonn 4422 -- TThhee IINNCCLLUUDDEE CCoommmmaanndd

REM DualPump.1.0.bas

REM

REM last update 2004/07/22

CUSTOMER_ID_MACRO:

write " Dual Pump 1.0 "

END

INCLUDE "PumpDefs.bas"

...

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH4 Adv. Les (NZC212)

4-35AAddvvaanncceedd LLeessssoonnss

The data logging function of the Tiger series is usually triggered by a
special event like a button press or a setpoint status. This function is
built into the operating system and is easy to setup with the Texmate
Configuration Utility.

However, if you want to trigger a log sample only when several condi-
tions are met, it is often easier to do this with a macro. Let's see how
easy that is:

When Setpoint 1 and 2 are on (line 5), a log sample is taken every sec-
ond (line 6) . To make sure that we get a sample right after both set-
points turn on, the timer is kept at the timeout value (line 13).

The FORCE_LOG command in line 8 causes the meter to take a log
sample. This sample uses the standard data logging setup, only in this
case the trigger is the macro.

LLeessssoonn 4433 -- DDaattaa LLooggggiinngg

MEM &CODE8 = 0150 // enable data logging

CONST LOG_TIMEOUT = 10 // every 1.0 sec

MAIN_MACRO:

if |SP1 = on and |SP2 = on then

if &TIMER1 > LOG_TIMEOUT then

&TIMER1 = 0 // reset timer

FORCE_LOG // triggers a log sample

endif

else

// set the timer to timeout value to trigger the

// first sample as soon as both setpoints come on

&TIMER1 = LOG_TIMEOUT

endif

END

Line 5

Line 6

Line 8

Line 13

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

4-36

 TDS CH4 Adv. Les (NZC212)

AAddvvaanncceedd LLeessssoonnss

Internally, the FORCE_LOG command just assigns a value to the &SIN-
GLE_LOG register, which ignores the value and triggers a log sample.
However, this register has different types in the Tiger 320 (integer)
and the Tiger 380 (string).

Therefore we recommend to always use the FORCE_LOG command
instead of assigning a value to the &SINGLE_LOG register.

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH4 Adv. Les (NZC212)

4-37AAddvvaanncceedd LLeessssoonnss

Just as in the Tiger 320 series meters, there are 1024 USER_MEMORY
registers available in the Tiger 380 series - even with the same register
numbers from 5121 to 6144. These are 16bit signed registers.

However, there are some applications where this arrangement is not
very convenient. For example, when using recipes you may only require
8bit values, but you may need more of them. Or you may want to
store several linearization tables, which use 24bit signed numbers. In
that case you have to split up the 24bit number and store it in two
16bit registers, wasting 8bits per value.

Unfortunately there is no general solution for all purposes. So we decid-
ed to give the most basic access to the USER_MEMORY in the form of
8bit unsigned registers. These are called USER_MEMORY_BYTE with
register numbers 10241 to 12288.

But even though the register numbers are different, the physical mem-
ory is the same:

USER_MEMORY_BYTE_1 and USER_MEMORY_BYTE_2 are stored in the
same location as USER_MEMORY_1, USER_MEMORY_BYTE_2047 and
USER_MEMORY_BYTE_2048 are stored in the same location as
USER_MEMORY_1024.

So you have to be careful if you use both USER_MEMORY and
USER_MEMORY_BYTE in the same macro that the actual addresses you
are using do not overlap - unless you really want that.

LLeessssoonn 4444 -- UUSSEERR__MMEEMMOORRYY vvss.. UUSSEERR__MMEEMMOORRYY__BBYYTTEE

MEM &USER_MEMORY_BYTE_1 = 1 //

MEM &USER_MEMORY_BYTE_2 = 0 // => USER_MEMORY_1 =

// 1 * 256 + 0 = 256

MEM &USER_MEMORY_2 = 258 // => USER_MEMORY_BYTE_3 = 1

// USER_MEMORY_BYTE_4 = 2

MEM &USER_MEMORY_3 = -1 // => USER_MEMORY_BYTE_5 = 255

// USER_MEMORY_BYTE_6 = 255

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

4-38

 TDS CH4 Adv. Les (NZC212)

AAddvvaanncceedd LLeessssoonnss

In the Tiger 380 series the USER_MEMORY area is located in RAM and is
backed up to FLASH at power down. This means there is no longer any
restrictions on the number of writes to USER_MEMORY with the 380.
(The 320 series meters are still restricted to 100,000 writes for
USER_MEMORY).

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS CH4 Adv. Les (NZC212)

4-39AAddvvaanncceedd LLeessssoonnss

MAIN_MACRO:

#TEMP = &CH2

REPEAT

IF &CH1 > 10000 THEN

GOTO ERROR

ELSIF &CH2 > 10 THEN

GOTO ERROR

ELSE

&CH1 = &CH1 * &CH1

#TEMP = #TEMP – 1

ENDIF

UNTIL #TEMP <= 1

END

ERROR:

WRITE " ___Over Range "

END

The last command we want to look at is the GOTO command. Although
this type of command is generally frowned upon in most programming
circles, it is sometimes useful so it is included as well.

The GOTO command allows a macro to jump from it’s current position
to another position anywhere in the program. Unlike the GOSUB instruc-
tion, this is a one way jump. It is sometimes used to reduce the size of
a program by jumping to common routines in the macro. Here’s an
example of how it is used:

The instruction GOTO ERROR is used twice in this macro. In each case if
a test is found to be true, the program jumps to the label defined as
ERROR. Near the bottom of the macro you will find the instruction
ERROR:. The : at the end tells the compiler that the word ERROR is a
label, which defines an address or point in the program.

LLeessssoonn 4455 –– TThhee GGOOTTOO CCoommmmaanndd

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

4-40

 TDS CH4 Adv. Les (NZC212)

AAddvvaanncceedd LLeessssoonnss

When the macro encounters a GOTO ERROR instruction, it knows that it
has to jump to this point.

That’s all there is to the GOTO instruction really. The reason it is
frowned upon is because it destroys the structure of a program and
can make it difficult to read and debug.

There are some rules to observe with labels. The first character in a
label cannot be a number. It must be a letter or an underscore (i.e.
"_"). A label must be placed by itself against the left hand margin on a
new line.

AAAppppeennddiixx

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS Appendix A (NZC212)

MMaaccrroo NNaammeess ..22

TTDDSS CCoommmmaannddss ..44

KKeeyy WWoorrddss ..66

OOppeerraattoorrss wwiitthh IIFF TTHHEENN IInnssttrruuccttiioonn ..77

PPrree--ddeeff iinneedd VVaalluueess ..77

HHiigghheerr MMaatthhss OOppeerraattoorrss ..88

SSiimmppllee MMaatthhss OOppeerraattoorrss ..88

AA SS CC II II CChhaarraacctteerrss ..99

SSiimmppllee LLooggiicc OOppeerraattoorrss ..99

GGlloossssaarryy ooff TTeerrmmss ..1100

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

A-2

 TDS Appendix A (NZC212)

AAppppeennddiixx AA

 TDS Appendix A (NZC212)

The macro name or label may only be declared once in each macro.
The default color of macro labels in the SSoouurrccee CCooddee EEddiittoorr is Teal,
but can be any color you wish if you change the default setting in the
SSyynnttaaxx HHiigghhll iigghhttiinngg dialog box. Remember, it is good practice to
keep the color of your macro labels different from any other text.

Macro Names

MMaaccrroo NNaammee MMaaccrroo FFuunnccttiioonn

CUSTOMER_ID_MACRO: Macro code placed in this section is exe-
cuted following the display of the meter
model and software version number, which
is accessed by pressing PROGRAM, UP, and
DOWN buttons at the same time.

Its intended use is to scroll a text string
across the display that describes the cus-
tomer’s details: application, macro version
number, etc, but it can contain any source
code. While the use of this macro is
optional, it is highly recommended as it is
often the only way of determining whether
a meter is running a macro or not.

MAIN_MACRO: Macro code placed in this section is exe-
cuted at the currently selected update
rate (normally once every 0.1 seconds). It
is executed after all the input channels
have been processed but before the set-
point logic and display are updated. This is
probably the most widely used macro and
would normally be used for any maths
equations or other logic that needs to be
applied to input data etc.

All macro names must be followed by a colon, and each macro name
requires an END command. The compiler provides the following pre-
defined macro names.

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS Appendix A (NZC212)

A-3AAppppeennddiixx AA

EDIT_MACRO: Macro code placed in this section is execut-
ed once, each time the PPRROOGGRRAAMM button
is pressed, while the meter is in Edit Mode.
The meter is placed in edit mode by exe-
cuting the EDIT command. This macro is
used for editing data or setup information.

F1_BUTTON_MACRO: Macro code placed in this section is exe-
cuted once each time the FF11 button is
pressed.

F2_BUTTON_MACRO: Macro code placed in this section is exe-
cuted once each time the FF22 button is
pressed.

F3_BUTTON_MACRO: Macro code placed in this section is exe-
cuted once each time the FF33 button is
pressed.

RESET_MACRO: Macro code placed in this section is exe-
cuted once initially after power has been
applied to the meter. It's intended use is
to initialize any variables before any other
macros are run.

MODBUS_MASTER_MACRO: Macro code placed in this section is exe-
cuted at the rate specified by the value of
the &POLL_TIME register (with a resolu-
tion of 0.01 secs). This macro is only
available in meters of the Tiger 380 series.
All Modbus commands must be invoked
within this section as they usually take
longer than one macro cycle. If a Modbus
command is issued within this section the
macro waits in the background for the
response. See Lesson 40 for more infor-
mation.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

A-4

 TDS Appendix A (NZC212)

AAppppeennddiixx AA

VIEW_MODE_MACRO: * Macro code placed in this section is exe-
cuted each time the UUPP or DDOOWWNN button is
pressed in the view mode, provided certain
configuration parameters have been set.

EDIT_DOWN_MACRO: * Macro code placed in this section is exe-
cuted each time the PPRROOGGRRAAMM button is
pressed, while the meter is in the setpoint
editing mode, provided certain configura-
tion parameters have been set.

* A detailed explanation of
these functions is outside
the scope of this tutorial.
Contact Texmate if you
wish to use these functions.

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS Appendix A (NZC212)

A-5AAppppeennddiixx AA

The TDS has a list of pre-defined commands that the compiler inter-
prets as a request to perform a specific programming task. The default
color for commands is blue, but again can be any color you wish. The
compiler provides the following pre-defined basic commands.

TDS Commands

CCoommmmaanndd FFuunnccttiioonn

IF ENDIF Selecting IF ENDIF inserts an IF THEN instruc-
tion followed by an ENDIF instruction.

For full details, see Lesson 2.

Commands are case sensitive as they can be either upper or lower
case, but not mixed. Selecting a basic command from the source code
editor (opened by right-clicking) automatically inserts the basic com-
mand in upper case.

1) Position the cursor in the sec-
ond line and right-click.

A selection of command tem-
plates appear.

2) Left-click the command you
require.

The Editor inserts the frame-
work of the selected command
(IF ELSE ENDIF in this case).

IF ELSE ENDIF Selecting IF ELSE ENDIF inserts an IF THEN
instruction, followed by an ELSE instruction,
followed by an ENDIF instruction.

For full details, see Lesson 3.

PROGRAMMING TIP

To prevent typing
errors affecting your
macro, it is always good
practice to use the
TTeemmpp ll aa tt ee ss list to
insert a command.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

A-6

 TDS Appendix A (NZC212)

AAppppeennddiixx AA

SELECT Selecting SELECT inserts a SELECT instruction,
followed by two CASE : statements, followed
by an ENDSEL instruction.

For full details, see Lesson 21.

IF ELSIF ENDIF Selecting IF ELSIF END inserts an IF THEN
instruction, followed by an ELSIF instruction,
followed by an ELSE instruction, followed by
an ENDIF instruction.

For full details, see Lesson 4.

SELECT DEFAULT Selecting SELECT DEFAULT inserts a SELECT
instruction, followed by two CASE : state-
ments, followed by an DEFAULT instruction,
followed by an ENDSEL instruction.

For full details, see Lesson 21.

REPEAT

FOR STEP

FOR NEXT Selecting FOR NEXT inserts a FOR = TO
instruction, followed by an empty line to insert
a block of instructions and then a NEXT
instruction to complete the loop.

For full details, see Lesson 24.

Selecting FOR STEP inserts a FOR = TO STEP
instruction, followed by an empty line to insert
a block of instructions and then a NEXT
instruction to complete the loop.

For full details, see Lesson 24.

Selecting REPEAT inserts a REPEAT instruction,
followed by an empty line to insert a block of
instructions and then an UNTIL instruction to
complete the loop.

For full details, see Lesson 23.

 TDS Appendix A (NZC212)

A-7AAppppeennddiixx AA

Key (or reserved) words appear in bold blue and cannot be used for
variable names. The compiler provides the following key words:

Key Words

ABS()
ADDR()
AND
APPEND
ARCCOS
ARCSIN
ARCTAN
ASC()
BIT
BITREG
CASE
CHR()
COS
COSH
CONST
DEFAULT
DIM
EDIT
EDIT_NUMERIC
EDIT_TEXT
ELSE
ELSIF
END
ENDIF
ENDSEL
EXIT_EDIT
FLOAT()
FOR
FORCE_LOG
GOSUB
GOTO
HEX()
IF

31
28
7, 32
4, 18, 30
31
31
31
35
15
27
21
28
31
31
11
21
26
13
20
20
3
4
1
2
21
13
39
24
43
22
45
39
2, 25

INCLUDE
INTEGER()
LET
LN
LOG
MEM
MODBUS_READ()
MODBUS_WRITE()
NEXT
OR
PRINT
REG
REM
REPEAT
RETURN
SCALE
SELECT
SERIAL_INPUT
SERIAL_POINTER
SET
SIN
SINH
SQR
STEP
TAN

TANH

THEN

TO

UNTIL

WRITE

XOR

42
39

31
31
29
40
40
24
7, 32
34, 41
15
1
23
22
33
21
36
39

31
31
31
24
31

31

2

24

23

18, 30, 41

32

CCoommmmaanndd EExxppllaaiinneedd
iinn LLeessssoonn CCoommmmaanndd EExxppllaaiinneedd

iinn LLeessssoonn

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

A-8

 TDS Appendix A (NZC212)

AAppppeennddiixx AA

 TDS Appendix A (NZC212)

The compiler provides the following pre-defined values. These are one
bit wide pre-defined bit flags. For an explanation on the function of the
pre-defined bit flags, see Lesson 5:

Pre-defined Values

PPrree--ddeeffiinneedd VVaalluueess

NORMAL

OFF, FALSE

ON, TRUE

Following is a list of operators that can be used with the IF THEN
instruction:

Operators with IF
THEN Instruction

''=='' If equal to

''<<'' If less than

''>>'' If greater than

''>>=='' If greater than or equal to

''<<=='' If less than or equal to

''<<>>'' oorr ''!!=='' If not equal to

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS Appendix A (NZC212)

A-9AAppppeennddiixx AA

 TDS Appendix A (NZC212)

You can use any of the following simple maths operators in your macro.
All of these operators require two operands:

Simple Maths
Operators

''++'' Addition

'' -- '' Subtraction

''**'' Multiplication

''//'' Division

''(())'' Parentheses

'' ^̂ '' Power of

Depending on the complexity of the equations within the parenthesis,
up to 10 levels of parenthesis can be used.

Unlike the simple operators, these higher maths operators only require
one operand. The following list shows the higher maths operators avail-
able and the allowable input range:

Higher Maths
Operators

SSQQRR Square root (positive number)

AABBSS(()) Absolute (positive) value of expression in parentheses

LLNN Natural log (base e)

LLOOGG Common log (base 10)

SSIINN Sine (-65535 to +65535)

CCOOSS Cosine (-65535 to +65535)

TTAANN Tangent (-65535 to +65535)

SSIINNHH Hyperbolic sine (-65535 to +65535)

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

A-10

 TDS Appendix A (NZC212)

AAppppeennddiixx AA

 TDS Appendix A (NZC212)

TTAANNHH Hyperbolic tangent*

AARRCCSSIINN Arc sine (-1 to +1)

AARRCCCCOOSS Arc cosine (-1 to +1)

AARRCCTTAANN Arc tangent*

CCOOSSHH Hyperbolic cosine*

The TDS includes the following simple logic operators. All of these
operators require two operands:

Simple Logic
Operators

AANNDD Logical And

OORR Logical Or

XXOORR Logical Exclusive Or

The TDS uses the following special ASCII characters:

CCRR Carriage Return

LLFF Line Feed

BBSS Back Step

NNUULL ((oorr NNUULLLL)) Null character

EESSCC Escape character

TTAABB Tab character

ASCII Characters

* These functions accept
a value in the range of
±1.175494E - 38 to
±3.402823E38.

FFFF Form feed

VVTTAABB Vertical tab

BBEELLLL Bell character

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS Appendix A (NZC212)

A-11AAppppeennddiixx AA

Register Type Flags
for Modbus com-
mands

Modbus Error Flags

The Modbus commands INTEGER(), FLOAT(), and HEX() have an option-
al fourth parameter to explicitely specify the register type. The follow-
ing list shows the possible values for this parameter:

8 bit: MB_BYTE

16 bit: MB_SHORT

24 bit: MB_24, MB_24_SWAPPED

32 bit: MB_LONG, MB_LONG_SWAPPED, MB_FLOAT,
MB_FLOAT_SWAPPED

The register &MODBUS_MASTER_FLAGS contains the standard Modbus
exception codes as well as transmission errors detected by the master
meter:

MODBUS_MASTER_FLAGS

bit 0 - bit 3 = Exception errors (Modbus standard)

1 = illegal function

2 = illegal data address

3 = illegal data value

4 = slave device failure

5 = acknowledge

6 = slave device busy

7 = negative acknowledge

8 = memory parity error

bit 4 = message timeout

bit 5 = CRC receive error

bit 6 = data type error

bit 7 = reception complete or waiting for a new command

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com

A-12

 TDS Appendix A (NZC212)

AAppppeennddiixx AA

Following is a glossary of terms relevant to writing and compiling macros:Glossary of Terms

TTeerrmm DDeeffiinnttiioonn

ASCII American Standard Code for Information
Interchange. A standard that identifies the
letters of the alphabet, numbers, and various
symbols by code numbers for exchanging
data between different computer systems.

Command A pre-defined word or group of words that
the compiler interprets as a request to per-
form a specific programming task.

Compile To take a sequence of commands, written in a
higher level language (such as BASIC), and
translate these into an intermediate language
(such as macro code), that can be run directly
in a specific target system (such as the meter).

Editor A software program that allows the user to
create and edit a text file.

Instruction A pre-defined word or group of words that
the compiler interprets as a request to per-
form a specific programming task.

Operand A quantity, function, or other entity that is to
have a mathematical operation performed on it.

Macro Engine The fixed software inside the meter that is
responsible for interpreting and executing the
macro code.

Non Volatile Memory Used for permanent data storage. Data is
retained when the device is turned off.

A-13AAppppeennddiixx AA

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com TDS Appendix A (NZC212)

TTeerrmm DDeeffiinnttiioonn

Operators A mathematical symbol, term, or other entity
that performs or describes an operation.
Multiplication and subtraction signs are opera-
tors.

RAM Random Access Memory. Used for temporary
data storage. All data is lost when the device
is turned off.

Source Code A text file that contains commands and com-
ments, which can be compiled into a working
program to run in a target device.

Text String A sequence of alpha-numeric characters,
enclosed in quotation (" ") marks, that forms
a word or sentence to be displayed or printed.

Variable A user defined symbol that represents an
unspecified or unknown quantity.

Operating System Preprogrammed code inside the meter that
controls the access to all meter functions and
macro engine.

Texmate Inc. Tel. (760) 598-9899 • www.texmate.com TDS Appendix A (NZC212)

A-14 AAppppeennddiixx AA

This Page Intentionally Left Blank

 TDS Appendix A (NZC212)

A-15AAppppeennddiixx AA

This Page Intentionally Left Blank

Texmate, Inc. Tel. (760) 598-9899 • www.texmate.com

	TDS CH4 Adv. Les (NZC212).pdf
	Lesson 30 Ð Special String C...
	Lesson 31 Ð Higher Math Oper...
	Lesson 32 Ð Logical Operators
	Lesson 33 Ð Linearization
	Lesson 35 Ð ASCII�Characters
	Lesson 34 Ð Printing to the ...
	Lesson 35 Ð ASCII�Characters
	Lesson 36 Ð Reading an ASCII...
	Lesson 37 Ð Reading Non ASCI...
	Lesson 38 Ð String Registers

	TDS Appendix A (NZC212).pdf
	Macro Names
	TDS Commands
	Key Words
	Operators with IF THEN Instr...
	Pre-defined Values
	Higher Maths Operators
	Simple Maths Operators
	ASCII�Characters
	Simple Logic Operators
	Glossary of Terms

	TDS CH4 Adv. Les (NZC212).pdf
	Lesson 30 Ð Special String C...
	Lesson 31 Ð Higher Math Oper...
	Lesson 32 Ð Logical Operators
	Lesson 33 Ð Linearization
	Lesson 35 Ð ASCII�Characters
	Lesson 34 Ð Printing to the ...
	Lesson 35 Ð ASCII�Characters
	Lesson 36 Ð Reading an ASCII...
	Lesson 37 Ð Reading Non ASCI...
	Lesson 38 Ð String Registers

